MA
Mark Alkema
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(73% Open Access)
Cited by:
12
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Whole integration of neural connectomics, dynamics and bio-mechanics for identification of behavioral sensorimotor pathways in Caenorhabditis elegans

Jimin Kim et al.Aug 3, 2019
E
J
M
J
Abstract The ability to fully discern how the brain orchestrates behavior requires the development of successful computational approaches to integrate and inform in-vivo investigations of the nervous system. To effectively assist with such investigations, computational approaches must be generic, scalable and unbiased. We propose such a comprehensive framework to investigate the interaction between the nervous system and the body for the nematode Caenorhabditis elegans (C. elegans) . Specifically, we introduce a model that computationally emulates the activity of the complete somatic nervous system and its response to stimuli. The model builds upon the full anatomical wiring diagram, the connectome , and integrates it with additional layers including intra-cellular and extra-cellular bio-physically relevant neural dynamics, layers translating neural activity to muscle forces and muscle impulses to body postures. In addition, it implements inverse integration which modulates neural dynamics according to external forces on the body. We validate the model by in-silico injection of currents into sensory- and inter-neurons known to play a role in locomotion behaviors (e.g. posterior/anterior touch) and by applying external forces on the body. We are able to generate characteristic baseline locomotion behaviors (forward and backward movements). Inclusion of proprioceptive feedback, implemented through inverse integration, shows that feedback can entrain and sustain movements initiated by neural or mechanical triggers. We further apply neural stimuli, experimentally known to modulate locomotion, and show that our model supports natural behavioral responses such as turns, reversals and avoidance. The proposed model can be utilized to infer neural circuits involved in sensorimotor behavior. For this purpose, we develop large-scale computational ablation approaches such as (i) ablation survey and (ii) conditional ablation . Our results show how an ablation survey can identify neurons required for a ventral turning behavior. We also show how conditional ablation can identify alternative novel neural pathways, e.g. propose neurons which facilitate steering behavior towards olfactory attractants. The outcomes of our study show that the framework can be utilized to identify neural circuits, which control, mediate and generate natural behavior.
1

A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior

Shankar Ramachandran et al.Apr 28, 2020
+9
R
N
S
SUMMARY Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here we show that the C. elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits. Impact statement Investigation of neuromodulatory control of ethologically conserved area-restricted food search behavior shows that NLP-12 stimulation of the head motor circuit promotes food searching through the previously uncharacterized CKR-1 GPCR.
1
Citation2
0
Save
1

Distinct Neuropeptide-Receptor Modules Regulate a Sex-Specific Behavioral Response to a Pheromone

Douglas Reilly et al.Dec 10, 2020
+7
E
E
D
Abstract Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans’ to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.
1
Citation2
0
Save
1

Age-associated changes to neuronal dynamics involve a disruption of excitatory/inhibitory balance in C. elegans

Gregory Wirak et al.Jul 8, 2021
+3
M
J
G
ABSTRACT In the aging brain, many of the alterations underlying cognitive and behavioral decline remain opaque. C. elegans offers a powerful model for aging research, with a simple, well-studied nervous system to further our understanding of the cellular modifications and functional alterations accompanying senescence. We perform multi-neuronal functional imaging across the aged C. elegans nervous system, measuring an age-associated breakdown in system-wide functional organization. At single-cell resolution, we detect shifts in activity dynamics toward higher frequencies. In addition, we measure a specific loss of inhibitory signaling that occurs early in the aging process and alters the systems critical excitatory/inhibitory balance. These effects are recapitulated with mutation of the calcium channel subunit UNC-2/CaV2α,. We find that manipulation of inhibitory GABA signaling can partially ameliorate or accelerate the effects of aging. The effects of aging are also partially mitigated by disruption of the insulin signaling pathway, known to increase longevity, or by a reduction of caspase activation. Data from mammals are consistent with our findings, suggesting a conserved shift in the balance of excitatory/inhibitory signaling with age that leads to breakdown in global neuronal dynamics and functional decline.
1
Citation2
0
Save
1

Vitamin B12 produced by gut bacteria modulates excitatory neurotransmission

Woo Kang et al.Sep 8, 2022
+4
A
A
W
ABSTRACT A growing body of evidence indicates that gut microbiota influence brain function and behavior. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory synaptic transmission and behavior in the host Caenorhabditis elegans . We find that vitamin B12 reduces cholinergic signaling in the nervous system through rewiring of the methionine (Met)/S-Adenosylmethionine (SAM) cycle in the intestine. We identify a conserved metabolic crosstalk between the Met/SAM cycle and the choline oxidation pathway. We show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic transmission by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behavior and may affect mental health.
1
Citation1
0
Save
0

The neurohormone tyramine stimulates the secretion of an Insulin-Like Peptide from the intestine to modulate the systemic stress response in C. elegans

Tania Veuthey et al.Feb 7, 2024
+2
M
S
T
ABSTRACT The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, lifespan, and stress resistance. In C. elegans , DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, INS-3, plays a crucial role in modulating the response to different types of stressors in C. elegans . ins-3 mutants display increased resistance to both heat and oxidative stress; however, under favorable conditions, this advantage is countered by slower reproductive development. ins-3 expression in both neurons and the intestine is downregulated in response to environmental stressors. Conversely, the neurohormone tyramine, which is released during the acute flight response, triggers an upregulation in ins-3 expression. Moreover, we found that tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine. The subsequent release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO and HSF-1. These studies offer mechanistic insights into the brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stress scenarios.
0

Gain-of-function mutations in the UNC-2/CaV2α channel lead to hyperactivity and excitation-dominant synaptic transmission in Caenorhabditis elegans

Yung-Chi Huang et al.Jan 1, 2019
+8
D
Y
Y
Mutations in pre-synaptic voltage gated calcium channels can lead to familial hemiplegic migraine type 1 (FHM1). While mammalian studies indicate that the migraine brain is hyperexcitable due to enhanced excitation or reduced inhibition, the molecular and cellular mechanisms underlying this excitatory/inhibitory (E/I) imbalance are poorly understood. We identified a gain-of-function (gf) mutation in the Caenorhabditis elegans CaV2 channel α1 subunit, UNC-2, which leads to increased calcium currents. unc-2(gf) mutants exhibit hyperactivity and seizure-like motor behaviors. Expression of the unc-2 gene with FHM1 substitutions R192Q and S218L leads to hyperactivity similar to that of unc-2(gf) mutants unc-2(gf) mutants display increased cholinergic- and decreased GABAergic-transmission. Moreover, we reveal that and increased cholinergic transmission in unc-2(gf) mutants leads to reduction of GABA synapses in a TAX-6/calcineurin dependent manner. Our studies provide mechanistic insight into how CaV2 gain-of-function mutations disrupt excitation-inhibition balance in the nervous system.
0

Corollary Discharge Promotes a Sustained Motor State in a Neural Circuit for Navigation

Ni Ji et al.Dec 3, 2019
+7
C
M
N
Animals exhibit behavioral and neural responses that persist on longer time scales than transient or fluctuating stimulus inputs. Here, we report that C. elegans uses corollary discharge to sustain motor responses during thermotactic navigation. By imaging circuit activity in behaving animals, we show that a principal postsynaptic partner of the AFD thermosensory neuron, the AIY interneuron, encodes both temperature and motor state information. By optogenetic and genetic manipulation of this circuit, we demonstrate that the motor state representation in AIY is a corollary discharge signal. RIM, an interneuron that is connected with premotor interneurons, is required for corollary discharge. Ablation of RIM eliminates the motor representation in AIY, allows thermosensory representations to reach downstream premotor interneurons, and reduces the animal's ability to sustain forward movements during thermotaxis. We propose that corollary discharge underlies a positive feedback mechanism to generate persistent neural activity and sustained behavioral patterns in a sensorimotor transformation.
0

PARP knockdown promotes synapse reformation after axon injury

Micah Belew et al.Nov 5, 2023
+3
J
W
M
Injured nervous systems are often incapable of self-repairing, resulting in permanent loss of function and disability. To restore function, a severed axon must not only regenerate, but must also reform synapses with target cells. Together, these processes beget functional axon regeneration. Progress has been made towards a mechanistic understanding of axon regeneration. However, the molecular mechanisms that determine whether and how synapses are formed by a regenerated motor axon are not well understood. Using a combination of in vivo laser axotomy, genetics, and high-resolution imaging, we find that poly (ADP-ribose) polymerases (PARPs) inhibit synapse reformation in regenerating axons. As a result, regenerated parp(-) axons regain more function than regenerated wild-type axons, even though both have reached their target cells. We find that PARPs regulate both axon regeneration and synapse reformation in coordination with proteolytic calpain CLP-4. These results indicate approaches to functionally repair the injured nervous system must specifically target synapse reformation, in addition to other components of the injury response.
0

Acute-stress impairs cytoprotective mechanisms through neural inhibition of the insulin pathway

Marı́a Rosa et al.Apr 24, 2018
+6
J
T
M
Persistent activation of the fight-or-flight response accelerates aging and increases the susceptibility to disease. We show that repeated induction of the C. elegans flight response inhibits conserved cytoprotective mechanisms. This acute-stress response activates neurons that release tyramine, the invertebrate analog of adrenaline/noradrenaline. Tyramine stimulates the DAF-2/Insulin/IGF-1 pathway and precludes the nuclear translocation of the DAF-16/FOXO transcription factor through the activation of an adrenergic-like receptor TYRA-3 in the intestine. In contrast, environmental long-term stressors, such as heat or oxidative stress, reduce tyramine release allowing the induction of FOXO-dependent cytoprotective genes. These findings demonstrate how a neural stress-hormone signaling provides a state-dependent neural switch between acute and long-term stress responses, and provide mechanistic insights how acute stress impairs cellular defensive systems.
Load More