PM
Peter Maye
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
957
h-index:
26
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Wnt Co-receptor LRP5 Is Essential for Skeletal Mechanotransduction but Not for the Anabolic Bone Response to Parathyroid Hormone Treatment

Kimihiko Sawakami et al.Jun 22, 2006
The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 μg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients. The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 μg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients. Low-density lipoprotein receptor-related protein 5 (LRP5) 2The abbreviations used are: LRP5, low density lipoprotein receptor-related protein 5; OPPG, osteoporosis-pseudoglioma; BMD, bone mineral densities; PTH, parathyroid hormone; GFP, green fluorescent protein; BMC, bone mineral content; μCT, microcomputed tomography; pQCT, peripheral quantitative computed tomography; MAPK, mitogen-activated protein kinase; N, newton; FSS, fluid shear stress; PGE2, prostaglandin E2; ERK, extracellular signal-regulated kinase; MS, mineralizing surface; BS, bone surface; MAR, mineral apposition rate; BFR, bone formation rate. is a single-pass transmembrane protein that functions as a co-receptor for the secreted family of Wnt glycoproteins (1He X. Semenov M. Tamai K. Zeng X. Development. 2004; 131: 1663-1677Crossref PubMed Scopus (873) Google Scholar). Wnt signaling, particularly through LRP5, is emerging as a key pathway in the regulation of bone mass and strength. For example, the autosomal recessive human disease osteoporosis-pseudoglioma syndrome (OPPG) is caused by loss-of-function mutations in LRP5 (2Gong Y. Slee R.B. Fukai N. Rawadi G. Roman-Roman S. Reginato A.M. Wang H. Cundy T. Glorieux F.H. Lev D. Zacharin M. Oexle K. Marcelino J. Suwairi W. Heeger S. Sabatakos G. Apte S. Adkins W.N. Allgrove J. Arslan-Kirchner M. Batch J.A. Beighton P. Black G.C. Boles R.G. Boon L.M. Borrone C. Brunner H.G. Carle G.F. Dallapiccola B. De Paepe A. Floege B. Halfhide M.L. Hall B. Hennekam R.C. Hirose T. Jans A. Juppner H. Kim C.A. Keppler-Noreuil K. Kohlschuetter A. LaCombe D. Lambert M. Lemyre E. Letteboer T. Peltonen L. Ramesar R.S. Romanengo M. Somer H. Steichen-Gersdorf E. Steinmann B. Sullivan B. Superti-Furga A. Swoboda W. van den Boogaard M.J. Van Hul W. Vikkula M. Votruba M. Zabel B. Garcia T. Baron R. Olsen B.R. Warman M.L. Cell. 2001; 107: 513-523Abstract Full Text Full Text PDF PubMed Scopus (1873) Google Scholar). Patients with OPPG present with bone mineral densities (BMD) several standard deviations below the mean and are prone to skeletal fracture and deformity. Interestingly, heterozygous carriers of loss-of-function mutations have mean BMDs in the osteoporotic range, indicating a dose-dependent effect of LRP5 function (2Gong Y. Slee R.B. Fukai N. Rawadi G. Roman-Roman S. Reginato A.M. Wang H. Cundy T. Glorieux F.H. Lev D. Zacharin M. Oexle K. Marcelino J. Suwairi W. Heeger S. Sabatakos G. Apte S. Adkins W.N. Allgrove J. Arslan-Kirchner M. Batch J.A. Beighton P. Black G.C. Boles R.G. Boon L.M. Borrone C. Brunner H.G. Carle G.F. Dallapiccola B. De Paepe A. Floege B. Halfhide M.L. Hall B. Hennekam R.C. Hirose T. Jans A. Juppner H. Kim C.A. Keppler-Noreuil K. Kohlschuetter A. LaCombe D. Lambert M. Lemyre E. Letteboer T. Peltonen L. Ramesar R.S. Romanengo M. Somer H. Steichen-Gersdorf E. Steinmann B. Sullivan B. Superti-Furga A. Swoboda W. van den Boogaard M.J. Van Hul W. Vikkula M. Votruba M. Zabel B. Garcia T. Baron R. Olsen B.R. Warman M.L. Cell. 2001; 107: 513-523Abstract Full Text Full Text PDF PubMed Scopus (1873) Google Scholar). Conversely, single amino acid missense mutations in LRP5, which alter the ability of the receptor to be regulated by endogenous inhibitors (3Boyden L.M. Mao J. Belsky J. Mitzner L. Farhi A. Mitnick M.A. Wu D. Insogna K. Lifton R.P. N. Engl. J. Med. 2002; 346: 1513-1521Crossref PubMed Scopus (1345) Google Scholar, 4Li X. Zhang Y. Kang H. Liu W. Liu P. Zhang J. Harris S.E. Wu D. J. Biol. Chem. 2005; 280: 19883-19887Abstract Full Text Full Text PDF PubMed Scopus (1071) Google Scholar, 5Ai M. Holmen S.L. Van Hul W. Williams B.O. Warman M.L. Mol. Cell. Biol. 2005; 25: 4946-4955Crossref PubMed Scopus (212) Google Scholar), segregate with an abnormally high bone mass phenotypes in an autosomal dominant manner (6Johnson M.L. Gong G. Kimberling W. Recker S.M. Kimmel D.B. Recker R.R. Am. J. Hum. Genet. 1997; 60: 1326-1332Abstract Full Text PDF PubMed Scopus (276) Google Scholar, 7Little R.D. Carulli J.P. Del Mastro R.G. Dupuis J. Osborne M. Folz C. Manning S.P. Swain P.M. Zhao S.C. Eustace B. Lappe M.M. Spitzer L. Zweier S. Braunschweiger K. Benchekroun Y. Hu X. Adair R. Chee L. FitzGerald M.G. Tulig C. Caruso A. Tzellas N. Bawa A. Franklin B. McGuire S. Nogues X. Gong G. Allen K.M. Anisowicz A. Morales A.J. Lomedico P.T. Recker S.M. Van Eerdewegh P. Recker R.R. Johnson M.L. Am. J. Hum. Genet. 2002; 70: 11-19Abstract Full Text Full Text PDF PubMed Scopus (1096) Google Scholar, 8Van Wesenbeeck L. Cleiren E. Gram J. Beals R.K. Benichou O. Scopelliti D. Key L. Renton T. Bartels C. Gong Y. Warman M.L. De Vernejoul M.C. Bollerslev J. Van Hul W. Am. J. Hum. Genet. 2003; 72: 763-771Abstract Full Text Full Text PDF PubMed Scopus (486) Google Scholar). Affected individuals have BMD values that are several standard deviations above the mean and have increased bone strength. In addition to studies in humans, mice have been created with loss-of-function mutations in the mouse ortholog of LRP5, called Lrp5 (9Fujino T. Asaba H. Kang M.J. Ikeda Y. Sone H. Takada S. Kim D.H. Ioka R.X. Ono M. Tomoyori H. Okubo M. Murase T. Kamataki A. Yamamoto J. Magoori K. Takahashi S. Miyamoto Y. Oishi H. Nose M. Okazaki M. Usui S. Imaizumi K. Yanagisawa M. Sakai J. Yamamoto T.T. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 229-234Crossref PubMed Scopus (340) Google Scholar, 10Kato M. Patel M.S. Levasseur R. Lobov I. Chang B.H. Glass 2nd, D.A. Hartmann C. Li L. Hwang T.H. Brayton C.F. Lang R.A. Karsenty G. Chan L. J. Cell Biol. 2002; 157: 303-314Crossref PubMed Scopus (948) Google Scholar, 11Iwaniec U.T. Liu G. Arzaga R.R. Donovan L.M. Brommage R. Wronski T.J. J. Bone Miner. Res. 2004; 19: S18Google Scholar). These mice recapitulate the clinical features observed in OPPG patients, suggesting that the mouse is a useful animal model for delineating the role of Lrp5 in the mammalian skeleton (9Fujino T. Asaba H. Kang M.J. Ikeda Y. Sone H. Takada S. Kim D.H. Ioka R.X. Ono M. Tomoyori H. Okubo M. Murase T. Kamataki A. Yamamoto J. Magoori K. Takahashi S. Miyamoto Y. Oishi H. Nose M. Okazaki M. Usui S. Imaizumi K. Yanagisawa M. Sakai J. Yamamoto T.T. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 229-234Crossref PubMed Scopus (340) Google Scholar, 10Kato M. Patel M.S. Levasseur R. Lobov I. Chang B.H. Glass 2nd, D.A. Hartmann C. Li L. Hwang T.H. Brayton C.F. Lang R.A. Karsenty G. Chan L. J. Cell Biol. 2002; 157: 303-314Crossref PubMed Scopus (948) Google Scholar, 11Iwaniec U.T. Liu G. Arzaga R.R. Donovan L.M. Brommage R. Wronski T.J. J. Bone Miner. Res. 2004; 19: S18Google Scholar). Additionally, transgenic mice that overexpress wild-type Lrp5 or a high bone mass causing missense allele of LRP5 (G171V) under control of the type I collagen promoter, have increased bone mass and skeletal strength (12Babij P. Zhao W. Small C. Kharode Y. Yaworsky P.J. Bouxsein M.L. Reddy P.S. Bodine P.V. Robinson J.A. Bhat B. Marzolf J. Moran R.A. Bex F. J. Bone Miner. Res. 2003; 18: 960-974Crossref PubMed Scopus (447) Google Scholar). Taken together, these data indicate that LRP5 has an important role in determining skeletal mass, strength, and function. Although loss-of-function mutations in LRP5 impart clear deficiencies on the skeleton, it is unclear how LRP5 participates in the modulation of bone mass. The striking similarity between the OPPG skeletal phenotype and a mechanical disuse phenotype, whereby exposure of the skeleton to normal mechanical stresses and strains is limited, suggests that LRP5 might be involved in mechanotransduction signaling. For example, disuse induces a loss of trabecular bone volume (13Bikle D.D. Halloran B.P. Cone C.M. Globus R.K. Morey-Holton E. Endocrinology. 1987; 120: 678-684Crossref PubMed Scopus (42) Google Scholar, 14David V. Laroche N. Boudignon B. Lafage-Proust M.H. Alexandre C. Ruegsegger P. Vico L. J. Bone Miner. Res. 2003; 18: 1622-1631Crossref PubMed Scopus (127) Google Scholar), a reduction in periosteal bone apposition (particularly when disuse occurs during growth) (15Jaworski Z.F.G. Liskova-Kiar M. Uhthoff H.K. J. Bone Joint Surg. 1980; 62-B: 104-110Crossref Google Scholar), and an increase in endocortical bone loss (particularly when disuse occurs during adulthood) (16Uhthoff H.K. Jaworski Z.F.G. J. Bone Joint Surg. 1978; 60: 420-429Crossref Google Scholar). Biopsies and radiographic findings from patients with OPPG reveal reduced trabecular bone volume and reduced periosteal expansion (2Gong Y. Slee R.B. Fukai N. Rawadi G. Roman-Roman S. Reginato A.M. Wang H. Cundy T. Glorieux F.H. Lev D. Zacharin M. Oexle K. Marcelino J. Suwairi W. Heeger S. Sabatakos G. Apte S. Adkins W.N. Allgrove J. Arslan-Kirchner M. Batch J.A. Beighton P. Black G.C. Boles R.G. Boon L.M. Borrone C. Brunner H.G. Carle G.F. Dallapiccola B. De Paepe A. Floege B. Halfhide M.L. Hall B. Hennekam R.C. Hirose T. Jans A. Juppner H. Kim C.A. Keppler-Noreuil K. Kohlschuetter A. LaCombe D. Lambert M. Lemyre E. Letteboer T. Peltonen L. Ramesar R.S. Romanengo M. Somer H. Steichen-Gersdorf E. Steinmann B. Sullivan B. Superti-Furga A. Swoboda W. van den Boogaard M.J. Van Hul W. Vikkula M. Votruba M. Zabel B. Garcia T. Baron R. Olsen B.R. Warman M.L. Cell. 2001; 107: 513-523Abstract Full Text Full Text PDF PubMed Scopus (1873) Google Scholar, 17Brude, E., and Stoss, H. (1986) 7th International Congress on Human Genetics, p. 35, BerlinGoogle Scholar). The reduced trabecular bone volume is maintained at a normal turnover rate in OPPG patients, which is commonly observed in long term disuse conditions (15Jaworski Z.F.G. Liskova-Kiar M. Uhthoff H.K. J. Bone Joint Surg. 1980; 62-B: 104-110Crossref Google Scholar, 16Uhthoff H.K. Jaworski Z.F.G. J. Bone Joint Surg. 1978; 60: 420-429Crossref Google Scholar). Moreover, mechanical stimulation of cultured osteoblasts causes translocation of β-catenin to the nucleus (18Norvell S.M. Alvarez M. Bidwell J. Pavalko F.M. Calcif. Tissue Int. 2005; 75: 396-404Crossref Scopus (135) Google Scholar) and activation of a T cell factor responsive promoter (19Hens J.R. Wilson K.M. Dann P. Chen X. Horowitz M.C. Wysolmerski J.J. J. Bone Miner. Res. 2005; 20: 1103-1113Crossref PubMed Scopus (165) Google Scholar), suggesting that mechanical loading activates canonical Wnt signaling. We undertook an investigation of the role of Lrp5 in mechanical signaling. We hypothesized that Lrp5 modulates bone mass, size, and strength, and that one of the modes of action through which Lrp5 exerts its effects is mechanotransduction. To test our hypothesis, we generated knock-out mice in which Lrp5 was inactivated, and we subjected adult Lrp5-/- mice to axial loading of the right ulna to stimulate osteogenesis in vivo. A nearly complete obliteration of an osteogenic response to in vivo loading was found in Lrp5-/- mice. We then investigated the role of Lrp5 in modulating the anabolic response to parathyroid hormone (PTH) treatment and found that PTH remained equally effective in enhancing bone mass in Lrp5-/- and Lrp5+/+ mice. The defect in mechanically induced osteogenesis was further investigated using an early osteoblast reporter mouse strain, which demonstrated that in vivo periosteal osteoblast recruitment/activation was not affected by Lrp5 deficiency. Studies of Lrp5-/- and Lrp5+/+ primary osteoblasts ex vivo also indicated that loss of Lrp5 signaling appears to affect later stages in the mechanotransduction signaling cascade, such as matrix production, rather than the early sensing of mechanical strain. Our data indicate that Lrp5 signaling is not needed to respond to PTH treatment, but that Lrp5 is important for the ability of the skeleton to respond to mechanical loading. Lrp5-deficient mice (Lrp5-/-) were generated as reported previously (20Clément-Lacroix P. Ai M. Morvan F. Roman-Roman S. Vayssière B. Belleville C. Estrera K. Warman M.L. Baron R. Rawadi G. Proc. Natl. Acad. Sci. U. S. A. 2006; 102: 17406-17411Crossref Scopus (406) Google Scholar). Briefly, the mice were created on a 129S/J background strain by disrupting exons 7 and 8 with a Lac-Z/Neo gene cassette. When correctly targeted, this allele does not express Lrp5 mRNA (Fig. 1), and produces no functional Lrp5 receptor, or receptor fragments. We interbred mice that were heterozygous carriers of this mutation and obtained wild-type (Lrp5+/+), heterozygous (Lrp5+/-), and homozygous mutant (Lrp5-/-) offspring in the expected Mendelian genetic frequencies. To study osteoblast recruitment to mechanically strained surfaces after loading (see below), we bred the Lrp5 mutant allele onto the transgenic pOBCol3.6GFP mouse strain, in which green fluorescent protein (GFP) expression is driven by the 3.6-kb rat type I collagen promoter fragment. The pOBCol3.6GFP mice exhibit strong expression of GFP in preosteoblasts and osteoblasts, with minimal to no GFP expression in other cell types (21Kalajzic I. Kalajzic Z. Kaliterna M. Gronowicz G. Clark S.H. Lichtler A.C. Rowe D. J. Bone Miner. Res. 2002; 17: 15-25Crossref PubMed Scopus (323) Google Scholar). All procedures performed in the experiments were approved by the Institutional Animal Care and Use Committee guidelines where the animals were raised and studied. Bone mineral content (BMC) of the whole body, spine, and femoral diaphysis were evaluated in vivo using peripheral dualenergy x-ray absorptiometry (pDXA; PIXImus II; GE-Lunar Corp., Madison, WI). Mice were anesthetized via inhalation of 2.5% isoflurane (IsoFlo; Abbott Laboratories, North Chicago, IL) mixed with O2 (1.5 liter/min) for a total of ∼8 min, including both induction and scanning. The mice were placed in prone position on a specimen tray and scanned. The head was excluded from total body scans. The region of interest for the spine included from the first lumbar vertebra (L1) to fifth lumbar vertebra (L5). The region of interest for the femur included the central 50% of the whole femur. We also analyzed hindlimb properties by positioning the region of interest box to include all skeletal tissue distal to the acetabulum. Scans were performed at 4, 8, 12, and 16 weeks of age (for the baseline phenotype characterization) or weekly from 12 to 16 weeks of age (for mice in PTH experiments; see below). All BMC measures were normalized by body weight to eliminate the confounding effects on changing body size and weight during growth. Geometric properties of femoral mid-diaphysis, trabecular bone volume fraction, and microarchitecture in the femoral distal metaphysis and L5 were evaluated using high-resolution desktop microcomputed tomography imaging systems (μCT-20; Scanco Medical AG, Basserdorf, Switzerland). For geometric properties of the femoral shaft, a single transverse slice through the mid-diaphysis was taken at 9-μm resolution. Each mid-diaphysis slice was imported into Scion Image version 4.0.2 (Scion Corporation, Frederick, MD), in which the geometric properties were calculated using standard and customized macros. Geometric properties included cortical area (mm2), and the maximum (Imax, mm4) and minimum (Imin, mm4) cross-sectional moments of inertia. In addition, we calculated polar moment of inertia IP as the sum of Imax and Imin. The cross-sectional moment of inertia estimates the capacity of a beam (in this case, a bone diaphysis) to resist torsion and bending. For evaluation of the trabecular envelope at the femoral distal metaphysis and L5, each specimen was scanned with a slice increment of 9 μm. CT images were reconstructed, filtered (σ = 0.8 and support = 1.0), and thresholded (22% of maximum possible gray scale value) as previously described (22Turner C.H. Hsieh Y.F. Muller R. Bouxsein M.L. Rosen C.J. McCrann M.E. Donahue L.R. Beamer W.G. J. Bone Miner. Res. 2001; 16: 206-213Crossref PubMed Scopus (93) Google Scholar). Scanning for the femur was started at 15% of the total femur length measured from the tip of femoral condyle and extended proximally for 100 slices. Scanning for the L5 vertebral body comprised 65% of the total vertebral body height, requiring ∼200 slices through the central region. The area for trabecular analysis was outlined within the trabecular compartment, excluding the cortical and subcortical bone. Every 10 sections were outlined, and the intermediate sections were interpolated with the contouring algorithm to create a volume of interest. Parameters of microarchitecture for both skeletal sites included bone volume (BV, mm3) and bone volume fraction (BV/TV, %), as well as trabecular number (Tb.N, mm-1), trabecular thickness (Tb.Th, μm), and trabecular separation (Tb.Sp, μm). In addition, we computed the connectivity density (Conn.D, mm-3) and structure model index (SMI), which indicates the platelike (SMI = 0) or rodlike (SMI = 3) nature of the underlying cancellous architecture. The right femur of each mouse was analyzed for volumetric BMD (vBMD) using pQCT. Each femur was positioned in a plastic tube filled with 70% ethanol and centered in the gantry of a Norland Stratec XCT Research SA+ pQCT (Stratec Electronics, Pforzheim, Germany). Using a collimation of 0.26 mm and a voxel size of 0.07 mm, three slices through the distal femur (15, 17.5, and 20% of the femoral length measured from the distal end of the femur) were recorded and averaged to obtain bone mineral measurements from a trabecular site. A single slice through the midshaft was also collected to monitor a cortical site. Mechanical properties of the femur and L5 vertebra were tested as previously described (22Turner C.H. Hsieh Y.F. Muller R. Bouxsein M.L. Rosen C.J. McCrann M.E. Donahue L.R. Beamer W.G. J. Bone Miner. Res. 2001; 16: 206-213Crossref PubMed Scopus (93) Google Scholar). Briefly, femurs were brought to room temperature slowly (∼2 h) in a saline bath and tested at the mid-diaphysis by three-point bending using a microforce materials testing machine (Vitrodyne V1000; Liveco, Inc., Burlington, VT). Load was applied in the anteroposterior direction midway between two supports positioned 9 mm apart. Tests were conducted at a cross-head speed of 0.2 mm/s, during which force and displacement were recorded at 0.025-s intervals. Load-displacement curves were generated, from which ultimate force (FU; N), stiffness (S; N/mm), and work to failure (U; mJ) were calculated. FU represents the strength of the bone, whereas U is a measure of the energy required to break the bone (23Turner C.H. Burr D.B. Bone. 1993; 14: 595-608Crossref PubMed Scopus (1367) Google Scholar). For L5, the end plates of the vertebral bodies were removed via parallel cuts on a diamond wafering saw (Isomet; Buehler, Lake Bluff, IL). After removing the neural arch by clipping through the pedicles, the vertebral bodies were submerged in a saline bath (∼2 h) at room temperature and tested in axial compression at a cross-head speed of 0.05 mm/s. FU, S, and U were calculated from the resulting load-displacement curves. For in situ forearm mechanical testing, five mice at 16 weeks of age from each genotype were chosen at random. They were killed by cervical dislocation under isoflurane-induced anesthesia. The right forearm was stored in refrigerated 70% ethanol for later strain measurement. The left forearm was fixed between the cup-shaped platens and loaded to failure in compression at a cross-head speed of 2 mm/s. FU was calculated from the resulting force versus displacement curves. The mean ultimate force calculated for each genotype was used to set three peak load magnitudes for the in vivo ulna loading experiments (see below). At 12 weeks of age, male and female Lrp5-/- and Lrp5+/+ mice were administered subcutaneous injections of human PTH-(1He X. Semenov M. Tamai K. Zeng X. Development. 2004; 131: 1663-1677Crossref PubMed Scopus (873) Google Scholar, 2Gong Y. Slee R.B. Fukai N. Rawadi G. Roman-Roman S. Reginato A.M. Wang H. Cundy T. Glorieux F.H. Lev D. Zacharin M. Oexle K. Marcelino J. Suwairi W. Heeger S. Sabatakos G. Apte S. Adkins W.N. Allgrove J. Arslan-Kirchner M. Batch J.A. Beighton P. Black G.C. Boles R.G. Boon L.M. Borrone C. Brunner H.G. Carle G.F. Dallapiccola B. De Paepe A. Floege B. Halfhide M.L. Hall B. Hennekam R.C. Hirose T. Jans A. Juppner H. Kim C.A. Keppler-Noreuil K. Kohlschuetter A. LaCombe D. Lambert M. Lemyre E. Letteboer T. Peltonen L. Ramesar R.S. Romanengo M. Somer H. Steichen-Gersdorf E. Steinmann B. Sullivan B. Superti-Furga A. Swoboda W. van den Boogaard M.J. Van Hul W. Vikkula M. Votruba M. Zabel B. Garcia T. Baron R. Olsen B.R. Warman M.L. Cell. 2001; 107: 513-523Abstract Full Text Full Text PDF PubMed Scopus (1873) Google Scholar, 3Boyden L.M. Mao J. Belsky J. Mitzner L. Farhi A. Mitnick M.A. Wu D. Insogna K. Lifton R.P. N. Engl. J. Med. 2002; 346: 1513-1521Crossref PubMed Scopus (1345) Google Scholar, 4Li X. Zhang Y. Kang H. Liu W. Liu P. Zhang J. Harris S.E. Wu D. J. Biol. Chem. 2005; 280: 19883-19887Abstract Full Text Full Text PDF PubMed Scopus (1071) Google Scholar, 5Ai M. Holmen S.L. Van Hul W. Williams B.O. Warman M.L. Mol. Cell. Biol. 2005; 25: 4946-4955Crossref PubMed Scopus (212) Google Scholar, 6Johnson M.L. Gong G. Kimberling W. Recker S.M. Kimmel D.B. Recker R.R. Am. J. Hum. Genet. 1997; 60: 1326-1332Abstract Full Text PDF PubMed Scopus (276) Google Scholar, 7Little R.D. Carulli J.P. Del Mastro R.G. Dupuis J. Osborne M. Folz C. Manning S.P. Swain P.M. Zhao S.C. Eustace B. Lappe M.M. Spitzer L. Zweier S. Braunschweiger K. Benchekroun Y. Hu X. Adair R. Chee L. FitzGerald M.G. Tulig C. Caruso A. Tzellas N. Bawa A. Franklin B. McGuire S. Nogues X. Gong G. Allen K.M. Anisowicz A. Morales A.J. Lomedico P.T. Recker S.M. Van Eerdewegh P. Recker R.R. Johnson M.L. Am. J. Hum. Genet. 2002; 70: 11-19Abstract Full Text Full Text PDF PubMed Scopus (1096) Google Scholar, 8Van Wesenbeeck L. Cleiren E. Gram J. Beals R.K. Benichou O. Scopelliti D. Key L. Renton T. Bartels C. Gong Y. Warman M.L. De Vernejoul M.C. Bollerslev J. Van Hul W. Am. J. Hum. Genet. 2003; 72: 763-771Abstract Full Text Full Text PDF PubMed Scopus (486) Google Scholar, 9Fujino T. Asaba H. Kang M.J. Ikeda Y. Sone H. Takada S. Kim D.H. Ioka R.X. Ono M. Tomoyori H. Okubo M. Murase T. Kamataki A. Yamamoto J. Magoori K. Takahashi S. Miyamoto Y. Oishi H. Nose M. Okazaki M. Usui S. Imaizumi K. Yanagisawa M. Sakai J. Yamamoto T.T. Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 229-234Crossref PubMed Scopus (340) Google Scholar, 10Kato M. Patel M.S. Levasseur R. Lobov I. Chang B.H. Glass 2nd, D.A. Hartmann C. Li L. Hwang T.H. Brayton C.F. Lang R.A. Karsenty G. Chan L. J. Cell Biol. 2002; 157: 303-314Crossref PubMed Scopus (948) Google Scholar, 11Iwaniec U.T. Liu G. Arzaga R.R. Donovan L.M. Brommage R. Wronski T.J. J. Bone Miner. Res. 2004; 19: S18Google Scholar, 12Babij P. Zhao W. Small C. Kharode Y. Yaworsky P.J. Bouxsein M.L. Reddy P.S. Bodine P.V. Robinson J.A. Bhat B. Marzolf J. Moran R.A. Bex F. J. Bone Miner. Res. 2003; 18: 960-974Crossref PubMed Scopus (447) Google Scholar, 13Bikle D.D. Halloran B.P. Cone C.M. Globus R.K. Morey-Holton E. Endocrinology. 1987; 120: 678-684Crossref PubMed Scopus (42) Google Scholar, 14David V. Laroche N. Boudignon B. Lafage-Proust M.H. Alexandre C. Ruegsegger P. Vico L. J. Bone Miner. Res. 2003; 18: 1622-1631Crossref PubMed Scopus (127) Google Scholar, 15Jaworski Z.F.G. Liskova-Kiar M. Uhthoff H.K. J. Bone Joint Surg. 1980; 62-B: 104-110Crossref Google Scholar, 16Uhthoff H.K. Jaworski Z.F.G. J. Bone Joint Surg. 1978; 60: 420-429Crossref Google Scholar, 17Brude, E., and Stoss, H. (1986) 7th International Congress on Human Genetics, p. 35, BerlinGoogle Scholar, 18Norvell S.M. Alvarez M. Bidwell J. Pavalko F.M. Calcif. Tissue Int. 2005; 75: 396-404Crossref Scopus (135) Google Scholar, 19Hens J.R. Wilson K.M. Dann P. Chen X. Horowitz M.C. Wysolmerski J.J. J. Bone Miner. Res. 2005; 20: 1103-1113Crossref PubMed Scopus (165) Google Scholar, 20Clément-Lacroix P. Ai M. Morvan F. Roman-Roman S. Vayssière B. Belleville C. Estrera K. Warman M.L. Baron R. Rawadi G. Proc. Natl. Acad. Sci. U. S. A. 2006; 102: 17406-17411Crossref Scopus (406) Google Scholar, 21Kalajzic I. Kalajzic Z. Kaliterna M. Gronowicz G. Clark S.H. Lichtler A.C. Rowe D. J. Bone Miner. Res. 2002; 17: 15-25Crossref PubMed Scopus (323) Google Scholar, 22Turner C.H. Hsieh Y.F. Muller R. Bouxsein M.L. Rosen C.J. McCrann M.E. Donahue L.R. Beamer W.G. J. Bone Miner. Res. 2001; 16: 206-213Crossref PubMed Scopus (93) Google Scholar, 23Turner C.H. Burr D.B. Bone. 1993; 14: 595-608Crossref PubMed Scopus (1367) Google Scholar, 24Torrance A.G. Mosley J.R. Suswillo R.F. Lanyon L.E. Calcif. Tissue Int. 1994; 54: 241-247Crossref PubMed Scopus (244) Google Scholar, 25Tanaka S.M. Alam I.M. Turner C.H. FASEB J. 2003; 17: 313-314Crossref PubMed Scopus (66) Google Scholar, 26Robling A.G. Turner C.H. Bone. 2002; 31: 562-569Crossref PubMed Scopus (179) Google Scholar, 27Parfitt A.M. Drezner M.K. Glorieux F.H. Kanis J.A. Malluche H. Meunier P.J. Ott S.M. Recker R.R. J. Bone Miner. Res. 1987; 2: 595-610Crossref PubMed Scopus (4921) Google Scholar, 28Frangos J.A. Eskin S.G. McIntire L.V. Ives C.L. Science. 1985; 227: 1477-1479Crossref PubMed Scopus (1005) Google Scholar, 29Wolf G. Schmidt W. Schunzel G. Acta Biol. Med. Ger. 1980; 39: 1243-1245PubMed Google Scholar, 30Hsieh Y.F. Robling A.G. Ambrosius W.T. Burr D.B. Turner C.H. J. Bone Miner. Res. 2001; 16: 2291-2297Crossref PubMed Scopus (211) Google Scholar, 31Gere J.M. Timoshenko S.P. Mechanics of Materials.3rd Ed. PWS-Kent, Boston1990Google Scholar, 32Boppart M.D. Kimmel D.B. Yee J.A. Cullen D.M. Bone. 1998; 23: 409-415Crossref PubMed Scopus (53) Google Scholar, 33Turner C.H. Owan I. Alvey T. Hulman J. Hock J.M. Bone. 1998; 22: 463-469Crossref PubMed Scopus (103) Google Scholar, 34Genetos D.C. Geist D.J. Liu D. Donahue H.J. Duncan R.L. J. Bone Miner. Res. 2005; 20: 41-49Crossref PubMed Google Scholar) (40 μg/kg) or vehicle (99.7% normal saline, 0.2% bovine serum albumin, and 0.1% HCl) 5 day/week for 4 weeks. All animals in the PTH study were scanned using the pixiMUS densitometer at baseline (12 weeks) and at weekly intervals during the treatment (under isofluorane-induced anesthesia). Animals were sacrificed at 16 weeks of age, 1 day after their last PTH or vehicle injection. Male and female mice (16 weeks old) in each of the three genotypes were divided randomly into three load magnitude groups for in vivo loading (n = 6-8/group) using the ulna loading protocol described by Torrance et al. (24Torrance A.G. Mosley J.R. Suswillo R.F. Lanyon L.E.
0
Citation391
0
Save
0

In Vivo Fate Mapping Identifies Mesenchymal Progenitor Cells

Danka Grčević et al.Nov 15, 2011
Adult mesenchymal progenitor cells have enormous potential for use in regenerative medicine. However, the true identity of the progenitors in vivo and their progeny has not been precisely defined. We hypothesize that cells expressing a smooth muscle α-actin promoter (αSMA)-directed Cre transgene represent mesenchymal progenitors of adult bone tissue. By combining complementary colors in combination with transgenes activating at mature stages of the lineage, we characterized the phenotype and confirmed the ability of isolated αSMA(+) cells to progress from a progenitor to fully mature state. In vivo lineage tracing experiments using a new bone formation model confirmed the osteogenic phenotype of αSMA(+) cells. In vitro analysis of the in vivo-labeled SMA9(+) cells supported their differentiation potential into mesenchymal lineages. Using a fracture-healing model, αSMA9(+) cells served as a pool of fibrocartilage and skeletal progenitors. Confirmation of the transition of αSMA9(+) progenitor cells to mature osteoblasts during fracture healing was assessed by activation of bone-specific Col2.3emd transgene. Our findings provide a novel in vivo identification of defined population of mesenchymal progenitor cells with active role in bone remodeling and regeneration.
0
Citation231
0
Save
0

CGCom: a framework for inferring Cell-cell Communication based on Graph Neural Network

Honglin Wang et al.Nov 15, 2023
Cell-cell communication is crucial in maintaining cellular homeostasis, cell survival and various regulatory relationships among interacting cells. Thanks to recent advances of spatial transcriptomics technologies, we can now explore if and how cells' proximal information available from spatial transcriptomics datasets can be used to infer cell-cell communication. Here we present a cell-cell communication inference framework, called CGCom, which uses a graph neural network (GNN) to learn communication patterns among interacting cells by combining single-cell spatial transcriptomic datasets with publicly available ligand-receptor information and the molecular regulatory information down-stream of the ligand-receptor signaling. To evaluate the performance of CGCom, we applied it to mouse embryo seqFISH datasets. Our results demonstrate that CGCom can not only accurately infer cell communication between individual cell pairs but also generalize its learning to predict communication between different cell types. We compared the performance of CGCom with two existing methods, CellChat and CellPhoneDB, and our comparative study revealed both common and unique communication patterns from the three approaches. Commonly found communication patterns include three sets of ligand-receptor communication relationships, one between surface ectoderm cells and spinal cord cells, one between gut tube cells and endothelium, and one between neural crest and endothelium, all of which have already been reported in the literature thus offering credibility of all three methods. However, we hypothesize that CGCom is superior in reducing false positives thanks to its use of cell proximal information and its learning between specific cell pairs rather than between cell types. CGCom is a GNN-based solution that can take advantage of spatially resolved single-cell transcriptomic data in predicting cell-cell communication with a higher accuracy.
1

Parental origin of Gsα inactivation differentially affects bone remodeling in a mouse model of Albright hereditary osteodystrophy

Patrick McMullan et al.Jul 27, 2021
Abstract Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivation of GNAS , a complex locus that encodes the alpha-stimulatory subunit of GPCRs (Gsα) in addition to NESP55 and XL α s due to alternative first exons. AHO skeletal manifestations include brachydactyly, brachymetacarpia, compromised adult stature, and subcutaneous ossifications. AHO patients with maternally-inherited GNAS mutations develop pseudohypoparathyroidism type 1A (PHP1A) with resistance to multiple hormones that mediate their actions through GPCRs requiring Gsα (eg., PTH, TSH, GHRH, calcitonin) and severe obesity. Paternally-inherited GNAS mutations cause pseudopseudohypoparathyroidism (PPHP), in which patients have AHO skeletal features but do not develop hormonal resistance or marked obesity. These differences between PHP1A and PPHP are caused by tissue-specific reduction of paternal Gsα expression. Previous reports in mice have shown loss of Gsα causes osteopenia due to impaired osteoblast number and function and suggest AHO patients could display evidence of reduced bone mineral density (BMD). However, we previously demonstrated PHP1A patients display normal-increased BMD measurements without any correlation to body mass index or serum PTH. Due to these observed differences between PHP1A and PPHP, we utilized our laboratory’s AHO mouse model to address whether Gsα heterozygous inactivation by the targeted disruption of exon 1 of Gnas differentially affects bone remodeling based on the parental inheritance of the mutation. Mice with paternally-inherited ( GnasE1+/−p ) and maternally-inherited ( GnasE1+/−m ) mutations displayed reductions in osteoblasts along the bone surface compared to wildtype. GnasE1+/−p mice displayed reduced cortical and trabecular bone parameters due to impaired bone formation and excessive bone resorption. GnasE1+/−m mice however displayed enhanced bone parameters due to increased osteoblast activity and normal bone resorption. These distinctions in bone remodeling between GnasE1+/−p and GnasE1+/−m mice appear to be secondary to changes in the bone microenvironment driven by calcitonin-resistance within GnasE1+/−m osteoclasts and therefore warrant further studies into understanding how Gsα influences osteoblast-osteoclast coupling interactions.
0

Hair follicle-resident progenitor cells are a major cellular contributor to heterotopic subcutaneous ossifications in a mouse model of Albright hereditary osteodystrophy

Patrick McMullan et al.Jun 21, 2024
Abstract Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no definitive strategies for their prevention and treatment due to a limited understanding of the cellular and molecular mechanisms contributing to lesion development. One disease in which the development of heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy (AHO). AHO is caused by heterozygous inactivation of GNAS , the gene that encodes the α-stimulatory subunit (Gα s ) of G proteins. Previously, we had shown using our laboratory’s AHO mouse model that SCOs develop around hair follicles (HFs). Here we show that SCO formation occurs due to inappropriate expansion and differentiation of HF-resident stem cells into osteoblasts. We also show in AHO patients and mice that Secreted Frizzled Related Protein 2 ( SFRP2) expression is upregulated in regions of SCO formation and that elimination of Sfrp2 in male AHO mice exacerbates SCO development. These studies provide key insights into the cellular and molecular mechanisms contributing to SCO development and have implications for potential therapeutic modalities not only for AHO patients but also for patients suffering from HOs with other etiologies.