MB
Maël Berre
Author with expertise in Malaria
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
23
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Structural characterization of the ACDC domain from ApiAP2 proteins of the malaria parasite

Marine Berre et al.Feb 10, 2024
+7
T
M
M
Abstract The Apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in the malaria parasite. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins and no other functional domains have been extensively characterized. One protein domain, which is present in a subset of the ApiAP2 proteins, is the conserved AP2-coincident domain mostly at the C-terminus (ACDC domain). Here we solved for the first time the crystal structure of the ACDC domain from two distinct Plasmodium falciparum ApiAP2 proteins and one orthologue from P. vivax , revealing a non-canonical four-helix bundle. Despite little sequence conservation between the ACDC domains from the two proteins, the structures are remarkably similar and do not resemble that of any other known protein domains. Due to their unique protein architecture and lack of homologues in the human genome, we performed in silico docking calculations against a library of known antimalarial compounds and we identified a small molecule that can potentially bind to any Apicomplexan ACDC domain within a pocket highly conserved amongst ApiAP2 proteins. Inhibitors based on this compound would disrupt the function of the ACDC domain and thus of the ApiAP2 proteins containing it, providing a new therapeutic window for targeting the malaria parasite and other Apicomplexans.
1

A versatile high-throughput assay based on 3D ring-shaped cardiac tissues generated from human induced pluripotent stem cell derived cardiomyocytes

Magali Seguret et al.Mar 29, 2023
+9
R
M
M
Abstract We developed a 96-well plate assay which allows fast, reproducible and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (PEG) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural read-outs.