OS
Oliver Soehnlein
Author with expertise in Macrophage Activation and Polarization
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(86% Open Access)
Cited by:
3,827
h-index:
78
/
i10-index:
179
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype

Michael Horckmans et al.Feb 2, 2016
Acute myocardial infarction (MI) is the leading cause of mortality worldwide. Anti-inflammatory strategies to reduce neutrophil-driven acute post-MI injury have been shown to limit acute cardiac tissue damage. On the other hand, whether neutrophils are required for resolving post-MI inflammation and repair is unknown. We show that neutrophil-depleted mice subjected to MI had worsened cardiac function, increased fibrosis, and progressively developed heart failure. Flow cytometry of blood, lymphoid organs and digested hearts revealed reduced numbers of Ly6Chigh monocytes in infarcts of neutrophil-depleted mice, whereas the number of macrophages increased, which was paralleled by reduced splenic Ly6Chigh monocyte mobilization but enhanced proliferation of cardiac macrophages. Macrophage subtype analysis revealed reduced cardiac expression of M1 markers, whereas M2 markers were increased in neutrophil-depleted mice. Surprisingly, we found reduced expression of phagocytosis receptor myeloid-epithelial-reproductive tyrosine kinase, a marker of reparative M2c macrophages which mediate clearance of apoptotic cells. In agreement with this finding, neutrophil-depleted mice had increased numbers of TUNEL-positive cells within infarcts. We identified neutrophil gelatinase-associated lipocalin (NGAL) in the neutrophil secretome as a key inducer of macrophages with high capacity to engulf apoptotic cells. The cardiac macrophage phenotype in neutrophil-depleted mice was restored by administration of neutrophil secretome or NGAL. Neutrophils are crucially involved in cardiac repair after MI by polarizing macrophages towards a reparative phenotype. Therapeutic strategies to reduce acute neutrophil-driven inflammation after MI should be carefully balanced as they might interfere with the healing response and cardiac remodelling.
0

Neutrophil secretion products pave the way for inflammatory monocytes

Oliver Soehnlein et al.May 20, 2008
The leukocyte response in inflammation is characterized by an initial recruitment of polymorphonuclear leukocytes (PMN) preceding a second wave of monocytes to the site of injury or infection. In the mouse, 2 populations of monocytes have been identified, Gr1(-)CCR2(-)CX3CR1(hi) resident monocytes and Gr1(+)CCR2(+)CX3CR1(lo) inflammatory monocytes. Here, intravital microscopy of the musculus cremaster and a subcutaneous air pouch model were used to investigate a possible link between PMN extravasation and the subsequent emigration of inflammatory monocytes in response to local stimulation with PAF. In mice that were made neutropenic by injection of a PMN-depleting antibody, the extravasation of inflammatory monocytes, but not resident monocytes, was markedly reduced compared with mice with intact white blood cell count but was restored by local treatment with secretion of activated PMN. Components of the PMN secretion were found to directly activate inflammatory monocytes and further examination revealed PMN-derived LL-37 and heparin-binding protein (HBP/CAP37/azurocidin) as primary mediators of the recruitment of inflammatory monocytes via activation of formyl-peptide receptors. These data show that LL-37 and HBP specifically stimulate mobilization of inflammatory monocytes. This cellular cross-talk functionally results in enhanced cytokine levels and increased bacterial clearance, thus boosting the early immune response.
0
Citation392
0
Save
0

Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis

Yvonne Döring et al.Mar 5, 2012
Background— Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive. Methods and Results— Here we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E–deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti–double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti–double-stranded–DNA antibody titers. Accordingly, anti–double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis. Conclusions— Self-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti–double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets.
0
Citation362
0
Save
0

Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death

Carlos Silvestre-Roig et al.May 1, 2019
The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis—a major underlying cause of mortality worldwide—to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically. Histone H4 is released from neutrophil extracellular traps and induces membrane lysis in vascular smooth muscle cells, leading to the destabilization of atherosclerotic plaques.
0
Citation317
0
Save
0

The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis

Trevor Fidler et al.Mar 17, 2021
Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1β reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1β or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.
0
Citation305
0
Save
0

Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis

Dirk Lievens et al.Aug 13, 2010
Abstract CD40 ligand (CD40L), identified as a costimulatory molecule expressed on T cells, is also expressed and functional on platelets. We investigated the thrombotic and inflammatory contributions of platelet CD40L in atherosclerosis. Although CD40L-deficient (Cd40l−/−) platelets exhibited impaired platelet aggregation and thrombus stability, the effects of platelet CD40L on inflammatory processes in atherosclerosis were more remarkable. Repeated injections of activated Cd40l−/− platelets into Apoe−/− mice strongly decreased both platelet and leukocyte adhesion to the endothelium and decreased plasma CCL2 levels compared with wild-type platelets. Moreover, Cd40l−/− platelets failed to form proinflammatory platelet-leukocyte aggregates. Expression of CD40L on platelets was required for platelet-induced atherosclerosis as injection of Cd40l−/− platelets in contrast to Cd40l+/+ platelets did not promote lesion formation. Remarkably, injection of Cd40l+/+, but not Cd40l−/−, platelets transiently decreased the amount of regulatory T cells (Tregs) in blood and spleen. Depletion of Tregs in mice injected with activated Cd40l−/− platelets abrogated the athero-protective effect, indicating that CD40L on platelets mediates the reduction of Tregs leading to accelerated atherosclerosis. We conclude that platelet CD40L plays a pivotal role in atherosclerosis, not only by affecting platelet-platelet interactions but especially by activating leukocytes, thereby increasing platelet-leukocyte and leukocyte-endothelium interactions.
Load More