Expansion of a triplet repeat tract in exon1 of the HTT gene causes Huntington's disease (HD). The mutant HTT protein (mHTT) has numerous aberrant interactions with diverse, pleiomorphic effects. No disease modifying treatments exist but lowering mutant huntingtin (mHTT) by gene therapy is a promising approach to treat Huntington's disease (HD). It is not clear when lowering should be initiated, how much lowering is necessary and for what duration lowering should occur to achieve benefits. Furthermore, the effects of mHTT lowering on brain lipids have not been assessed. Using a mHtt-inducible mouse model we analyzed whole body mHtt lowering initiated at different ages and sustained for different time-periods. Subcellular fractionation (density gradient ultracentrifugation), protein chemistry (gel filtration, western blot, and capillary electrophoresis immunoassay), liquid chromatography and mass spectrometry of lipids, and bioinformatic approaches were used to test effects of mHTT transcriptional lowering. mHTT protein in cytoplasmic and synaptic compartments of the caudate putamen, which is most affected in HD, was reduced 38-52%. Little or no lowering of mHTT occurred in nuclear and perinuclear regions where aggregates formed at 12 months of age. mHtt transcript repression partially or fully preserved select striatal proteins (SCN4B, PDE10A). Total lipids in striatum were reduced in LacQ140 mice at 9 months and preserved by early partial mHtt lowering. The reduction in total lipids was due in part to reductions in subclasses of ceramide (Cer), sphingomyelin (SM), and monogalactosyldiacylglycerol (MGDG), which are known to be important for white matter structure and function. Lipid subclasses phosphatidylinositol (PI), phosphatidylserine (PS), and bismethyl phosphatidic acid (BisMePA) were also changed in LacQ140 mice. Levels of all subclasses other than ceramide were preserved by early mHtt lowering. Pathway enrichment analysis of RNAseq data imply a transcriptional mechanism is responsible in part for changes in myelin lipids, and some but not all changes can be rescued by mHTT lowering. Our findings suggest that early and sustained reduction in mHtt can prevent changes in levels of select striatal proteins and most lipids but a misfolded, degradation-resistant form of mHTT hampers some benefits in the long term.