BV
B. Venton
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
915
h-index:
52
/
i10-index:
107
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Psychoanalytical Electrochemistry: Dopamine and Behavior

B. Venton et al.Oct 1, 2003
ADVERTISEMENT RETURN TO ISSUEPREVFeaturesNEXTPsychoanalytical Electrochemistry: Dopamine and BehaviorCorrelating neurochemical changes in the brain with behavior marks the beginning of an exciting new interdisciplinary field, psychoanalytical chemistry.B. Jill Venton and R. Mark WightmanCite this: Anal. Chem. 2003, 75, 19, 414 A–421 APublication Date (Web):October 1, 2003Publication History Published online1 October 2003Published inissue 1 October 2003https://pubs.acs.org/doi/10.1021/ac031421chttps://doi.org/10.1021/ac031421cnewsACS Publications. This publication is available under these Terms of Use. Request reuse permissions This publication is free to access through this site. Learn MoreArticle Views5475Altmetric-Citations367LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail PDF (375 KB) Get e-Alertsclose SUBJECTS:Amines,Electrochemistry Get e-Alerts
0

Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo

B.E. Swamy et al.Jan 1, 2007
Dopamine and serotonin are important neurotransmitters that interact in the brain. While dopamine is easily detected with electrochemical sensors, the detection of serotonin is more difficult because reactive species formed after oxidation can adsorb to the electrode, reducing sensitivity. Carbon nanotube treatments of electrodes have been used to increase the sensitivity, promote electron transfer, and reduce fouling. Most methods have focused on nanotube coatings of large electrodes and slower electrochemical techniques that are not conducive to measurements in vivo. In this study, we investigated carbon-fiber microelectrodes modified with single-walled carbon nanotubes for the co-detection of dopamine and serotoninin vivo. Using fast-scan cyclic voltammetry, S/N ratios for the neurotransmitters increased after nanotube coating. Electrocatalytic effects of nanotubes were not apparent at fast scan rates but faster kinetics were observed with slower scanning. Nanotube-modified microelectrodes showed significantly less fouling after exposure to serotonin than bare electrodes. The nanotube-modified electrodes were used to monitor stimulated dopamine and serotonin changes simultaneously in the striatum of anesthetized rat after administration of a serotonin synthetic precursor. These studies show that nanotube-coated microelectrodes can be used with fast scanning techniques and are advantageous for in vivo measurements of neurotransmitters because of their greater sensitivity and resistance to fouling.
14

Real-Time Measurement of Stimulated Dopamine Release in Compartments of the Adult Drosophila melanogaster Mushroom Body

Mimi Shin et al.Jun 29, 2020
Abstract Drosophila melanogaster , the fruit fly, is an exquisite model organism to understand neurotransmission. Dopaminergic signaling in the Drosophila mushroom body (MB) is involved in olfactory learning and memory, with different compartments controlling aversive learning (corner) vs appetitive learning (medial tip). Here, the goal was to develop techniques to measure endogenous dopamine in compartments of the MB for the first time. We compared three stimulation methods: acetylcholine (natural stimulus), P2X 2 (chemogenetics), and CsChrimson (optogenetics). Evoked dopamine release was measured with fast-scan cyclic voltammetry in isolated adult Drosophila brains. Acetylcholine stimulated the largest dopamine release (0.40 μM), followed by P2X 2 (0.14 μM), and CsChrimson (0.07 μM). With the larger acetylcholine and P2X 2 stimulations, there were no regional or sex differences in dopamine release. However, with CsChrimson, dopamine release was significantly higher in the corner than the medial tip, and females had more dopamine than males. Michaelis-Menten modeling of the single-light pulse revealed no significant regional differences in K m , but the corner had a significantly lower V max (0.12 μM/s vs. 0.19 μM/s) and higher dopamine release (0.05 μM vs. 0.03 μM). Optogenetic experiments are challenging because CsChrimson is also sensitive to blue light used to activate green fluorescent protein, and thus, light exposure during brain dissection must be minimized. These experiments expand the toolkit for measuring endogenous dopamine release in Drosophila , introducing chemogenetic and optogenetic experiments for the first time. With a variety of stimulations, different experiments will help improve our understanding of neurochemical signaling in Drosophila .
14
Citation2
0
Save
0

Microdosing ketamine in Drosophila does not inhibit SERT like SSRIs, but causes behavioral changes mediated by glutamate and serotonin receptors

Kelly Dunham et al.Jan 1, 2023
Recently, the FDA approved microdosing ketamine for treatment resistant depression. Traditional antidepressants, like serotonin selective reuptake inhibitors (SSRIs), block serotonin reuptake, but it is not clear if ketamine blocks serotonin reuptake. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals, and is a good model to track depression behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically-stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 hours and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤ 10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding due to its anesthetic properties. Since microdosing ketamine causes behavioral effects, we also investigated behavior changes with low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists, which are other possible sites for ketamine action. NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs at microdoses, but affects behavior with other mechanisms.
0

The therapeutic potential of low-intensity focused ultrasound for treating substance use disorder

Greatness Olaitan et al.Nov 19, 2024
Substance use disorder (SUD) is a persistent public health issue that necessitates the exploration of novel therapeutic interventions. Low-intensity focused ultrasound (LIFU) is a promising modality for precise and invasive modulation of brain activity, capable of redefining the landscape of SUD treatment. The review overviews effective LIFU neuromodulatory parameters and molecular mechanisms, focusing on the modulation of reward pathways in key brain regions in animal and human models. Integration of LIFU with established therapeutics holds promise for augmenting treatment outcomes in SUD. The current research examines LIFU’s efficacy in reducing cravings and withdrawal symptoms. LIFU shows promise for reducing cravings, modulating reward circuitry, and addressing interoceptive dysregulation and emotional distress. Selecting optimal parameters, encompassing frequency, burst patterns, and intensity, is pivotal for balancing therapeutic efficacy and safety. However, inconsistencies in empirical findings warrant further research on optimal treatment parameters, physiological action mechanisms, and long-term effects. Collaborative interdisciplinary investigations are imperative to fully realize LIFU’s potential in revolutionizing SUD treatment paradigms and enhancing patient outcomes.
0

Focused Ultrasound modulates dopamine in a mesolimbic reward circuit

Greatness Olaitan et al.Feb 14, 2024
Abstract Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm 2 Isppa) of 2-minute LIFU to the prelimbic region (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm 2 to the PLC significantly reduced dopamine release by ∼ 50% for up to 2 hours. However, double the intensity (26 W/cm 2 ) resulted in less inhibition (∼30%), and half the intensity (6.5 W/cm 2 ) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling of temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm 2 , suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
4

RING Finger Protein 11 (RNF11) modulates dopamine release inDrosophila

Eve Champaloux et al.Jun 29, 2020
Abstract Recent work indicates a role for RING finger protein 11 (RNF11) in Parkinson disease (PD) pathology, which involves the loss of dopaminergic neurons. However, the role of RNF11 in regulating dopamine neurotransmission has not been studied. In this work, we tested the effect of RNF11 RNAi knockdown or overexpression on stimulated dopamine release in the larval Drosophila central nervous system. Dopamine release was stimulated using optogenetics and monitored in real-time using fast-scan cyclic voltammetry at an electrode implanted in an isolated ventral nerve cord. RNF11 knockdown doubled dopamine release, but there was no decrease in dopamine from RNF11 overexpression. RNF11 knockdown did not significantly increase stimulated serotonin or octopamine release, indicating the effect is dopamine specific. Dopamine clearance was also changed, as RNF11 RNAi flies had a higher V max and RNF11 overexpressing flies had a lower V max than control flies. RNF11 RNAi flies had increased mRNA levels of dopamine transporter (DAT) in RNF11 , confirming changes in DAT. In RNF11 RNAi flies, release was maintained better for stimulations repeated at short intervals, indicating increases in the recycled releasable pool of dopamine. Nisoxetine, a DAT inhibitor, and flupenthixol, a D2 antagonist, did not affect RNF11 RNAi or overexpressing flies differently than control. Thus, RNF11 knockdown causes early changes in dopamine neurotransmission, and this is the first work to demonstrate that RNF11 affects both dopamine release and uptake. RNF11 expression decreases in human dopaminergic neurons during PD, and that decrease may be protective by increasing dopamine neurotransmission in the surviving dopaminergic neurons.