GB
Graham Belsham
Author with expertise in Gastrointestinal Viral Infections and Vaccines Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(69% Open Access)
Cited by:
2,935
h-index:
63
/
i10-index:
190
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure

Yuri Svitkin et al.Mar 1, 2001
Eukaryotic initiation factor (elF) 4A functions as a subunit of the initiation factor complex elF4F, which mediates the binding of mRNA to the ribosome. elF4A possesses ATPase and RNA helicase activities and is the prototype for a large family of putative RNA helicases (the DEAD box family). It is thought that the function of elF4A during translation initiation is to unwind the mRNA secondary structure in the 5' UTR to facilitate ribosome binding. However, the evidence to support this hypothesis is rather indirect, and it was reported that elF4A is also required for the translation of mRNAs possessing minimal 5' UTR secondary structure. Were this hypothesis correct, the requirement for elF4A should correlate with the degree of mRNA secondary structure. To test this hypothesis, the effect of a dominant-negative mutant of mammalian elF4A on translation of mRNAs with various degrees of secondary structure was studied in vitro. Here, we show that mRNAs containing stable secondary structure in the 5' untranslated region are more susceptible to inhibition by the elF4A mutant. The mutant protein also strongly inhibits translation from several picornavirus internal ribosome entry sites (IRES), although to different extents. UV crosslinking of elF4F subunits and elF4B to the mRNA cap structure is dramatically reduced by the elF4A mutant and RNA secondary structure. Finally, the elF4A mutant forms a more stable complex with elF4G, as compared to the wild-type elF4A, thus explaining the mechanism by which substoichiometric amounts of mutant elF4A inhibit translation.
0
Citation434
0
Save
855

Infection, recovery and re-infection of farmed mink with SARS-CoV-2

Thomas Rasmussen et al.May 7, 2021
Abstract Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene. The infected mink recovered and after free-testing of the mink, the animals remained seropositive. During follow-up studies, after a period of more than 2 months without virus detection, over 75% of tested animals scored positive again for SARS-CoV-2 RNA. Whole genome sequencing showed that the virus circulating during this re-infection was most closely related to the virus identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies after re-infection than at free-testing. Thus, following recovery from an initial infection, seropositive mink rapidly became susceptible to re-infection by SARS-CoV-2. Article Summary Line Following widespread infection with SARS-CoV-2 of mink on a farm, all tested animals had seroconverted and the farm was then tested free of infection; however, less than 3 months later, a further round of infection affected more than 75% of tested animals.
855
Paper
Citation6
0
Save
4

Inefficient transmission of African swine fever virus to sentinel pigs from environmental contamination under experimental conditions

Ann Olesen et al.Sep 28, 2023
Abstract Knowledge about African swine fever virus (ASFV) transmission and its survival in the environment is mandatory to develop rational control strategies and combat this serious disease in pigs. In this study, the risk that environmental contamination poses for infection of naïve pigs was investigated. Naïve pigs were introduced as sentinels into contaminated pens either on the same day or up to three days after ASFV-infected pigs were removed. Three experiments were carried out in which four to six pigs per pen were inoculated with virulent ASFV isolates OURT88/1 (genotype I), Georgia 2007/1 or POL/2015/Podlaskie (genotype II), respectively. The majority of the inoculated pigs developed acute disease but with no evident haemorrhagic lesions or haemorrhagic diarrhoea and were culled at the predefined humane endpoint. The levels of ASFV DNA detected in the blood of the infected animals reached 10 7-9 genome copies/ml before euthanasia. Environmental swabs were taken from different surfaces in the animal rooms, as well as from faeces and urine, close to the time of introduction of the naïve animals. Relatively low quantities of virus DNA were detected in the environmental samples, in the order of 10 3-7 genome copies. Neither clinical signs nor virus genomes were detected in the blood of any of the sentinel pigs over a period of two to three weeks after exposure, indicating that transmission from the ASFV-contaminated environment did not occur. Interestingly, viral DNA was detected in nasal and oral swabs from some of the sentinel animals at early days of exposure (ranging between 10 3.7-5.8 genome copies), though none of them developed ASF. The results indicate a relatively low risk of ASFV transmission from a contaminated environment in the absence of blood from infected animals.
4
Paper
Citation1
0
Save
0

Emergence and spread of SARS-CoV-2 variants from farmed mink to humans and back during the epidemic in Denmark, June-November 2020

Thomas Rasmussen et al.Feb 14, 2024
Abstract The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) not only caused the COVID-19 pandemic but also had a major impact on farmed mink production in several European countries. In Denmark, the entire population of farmed mink (over 15 million animals) was culled in late 2020. During the period of June to November 2020, mink on 290 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2. Genome sequencing identified changes in the virus within the mink and it is estimated that about 4000 people in Denmark became infected with these mink virus variants. However, the routes of transmission of the virus to, and from, the mink have been unclear. Phylogenetic analysis revealed the generation of multiple clusters of the virus within the mink. Detailed analysis of changes in the virus during replication in mink and, in parallel, in the human population in Denmark, during the same time period, has been performed here. The majority of cases in mink involved variants with the Y435F substitution and the H69/V70 deletion within the Spike (S) protein; these changes emerged early in the outbreak. However, further introductions of the virus, by variants lacking these changes, from the human population into mink also occurred. Based on phylogenetic analysis of viral genome data, we estimate, using a conservative approach, that about 17 separate examples of mink to human transmission occurred in Denmark but up to 59 such events (90% credible interval: (39-77)) were identified using parsimony to count cross-species jumps on transmission trees inferred using Bayesian methods. Using the latter approach, 136 jumps (90% credible interval: (117-164)) from humans to mink were found, which may underlie the farm-to-farm spread. Thus, transmission of SARS-CoV-2 from humans to mink, mink to mink, from mink to humans and between humans were all observed. (298 words) Author summary In addition to causing a pandemic in the human population, SARS-CoV-2 also infected farmed mink. In Denmark, after the first identification of infection in mink during June 2020, a decision was made in November 2020 to cull all the farmed mink. Within this outbreak, mink on 290 farms (out of about 1100 in the country) were found to have been infected. We showed, by analysis of the viruses from the mink, that the viruses on the farms were mainly of three different, but closely related, types (termed Clusters 2, 3 and 4) that shared certain distinctive features. Thus, we found that many outbreaks in mink resulted from transmission of the virus between mink farms. However, we identified that new introductions of other virus variants, presumably from infected humans, also occurred. Furthermore, we showed that spread of the virus from infected mink to humans also happened on multiple occasions. Thus, transmission of these viruses from humans to mink, mink to mink, from mink to humans and between humans were all observed. (172 words)
0
Citation1
0
Save
0

Use of a Novel Feeding System to Assess the Survival of a Very Stable Mammalian Virus, Porcine Parvovirus, Within Black Soldier Fly (Hermetia illucens) Larvae: A Comparison with Mealworm (Tenebrio molitor) Larvae

Antoine Lecocq et al.Nov 25, 2024
Insect larvae production offers the potential for large-scale synthesis of high-quality protein that can be used as feed or food. However, currently, there are limitations on the source of substrates for the insect larvae to use. One concern is the potential survival of animal pathogens within insect larvae if their feed is contaminated. In this study, the survival of a very stable virus, porcine parvovirus (PPV), within mealworm (Tenebrio molitor) and black soldier fly (BSF) (Hermetia illucens) larvae has been analyzed after oral ingestion of the virus. PPV genomic DNA could be readily detected by PCR in both species of larvae up until 9 days post ingestion (DPI), the end of the study period. Furthermore, infection of susceptible PK15 cells by PPV from homogenized mealworm larvae could be detected until at least 3 DPI, using an immunoperoxidase staining method and, up until 9 DPI, with a more sensitive real time PCR assay. Thus, PPV can remain infectious within mealworm larvae during their main growth phase through to their harvesting. However, it may be considered that PPV is exceptional in this respect since it displays unusual stability, e.g., to heat.
0

The pseudoknot region and poly-(C) tract comprise an essential RNA packaging signal for assembly of foot-and-mouth disease virus

Chris Neil et al.May 24, 2024
Abstract Virus assembly is a crucial step for the completion of the viral replication cycle. In addition to ensuring efficient incorporation of viral genomes into nascent virions, high specificity is required to prevent incorporation of host nucleic acids. For picornaviruses, including FMDV, the mechanisms required to fulfil these requirements are not well understood. However, recent evidence has suggested that specific RNA sequences dispersed throughout picornavirus genomes are involved in packaging. Here, we have shown that such sequences are essential for FMDV RNA packaging and have demonstrated roles for both the pseudoknot (PK) region and the poly-(C) tract in this process, where the length of the poly-(C) tract was found to influence the efficiency of RNA encapsidation. Sub-genomic replicons containing longer poly-(C) tracts were packaged with greater efficiency in trans , and viruses recovered from transcripts containing short poly-(C) tracts were found to have greatly extended poly-(C) tracts after only a single passage in cells, suggesting that maintaining a long poly-(C) tract provides a selective advantage. We also characterised a critical packaging signal (PS) located in the pseudoknot (PK) region, adjacent to the poly-(C) tract, as well as several other non-essential but beneficial PSs elsewhere in the genome. Collectively, these PSs greatly enhanced encapsidation efficiency, with the poly-(C) tract possibly facilitating nearby PSs to adopt the correct conformation. Using these data, we have proposed a model where interactions with capsid precursors control a transition between two RNA conformations, directing the fate of nascent genomes to either be packaged or alternatively to act as templates for replication and/or for protein translation. Author summary Genome packaging, whereby viral RNA is incorporated into protective protein capsids to produce more virus particles, is a crucial step in RNA virus life cycles. It is a stringent process as only viral RNA is encapsidated, while cellular RNA is excluded. This study reveals the essential role of packaging signals in FMDV RNA packaging, specifically those in the pseudoknot region and in a region that can contain >100 cytosines, termed the poly-(C) tract. We demonstrate that the length of the poly-(C) tract significantly affects packaging efficiency; genomes containing longer poly-(C) tracts are favoured. This is the first role that has been identified for the poly-(C) tract in FMDV. We have also found an essential packaging signal in the pseudoknot region, which is assisted by other packaging signals located throughout the genome, that together facilitate encapsidation of FMDV RNA. These results provide compelling evidence for the involvement of RNA packaging signals in FMDV assembly. Based on this, we propose a simple model for FMDV RNA packaging, which involves a transition from genome replication to genome packaging and is controlled by packaging signals. This knowledge could pave the way for future research and development of novel antiviral strategies targeting FMDV and other picornaviruses.
Load More