QW
Qingcui Wu
Author with expertise in Ubiquitin-Proteasome Proteolytic Pathway
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
199
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger Cyclin K degradation

Lu Lv et al.Jun 11, 2020
Abstract Molecular glues are small molecules that exert their biologic or therapeutic activities by inducing gain-of-function interactions between pairs of proteins. In particular, molecular-glue degraders, which mediate interactions between target proteins and components of the ubiquitin proteasome system to cause targeted protein degradation, hold great promise as a unique modality for therapeutic targeting of proteins that are currently intractable. Here, we report a new molecular glue HQ461 discovered by high-throughput screening of small molecules that inhibited NRF2 activity. Using unbiased loss-of-function and gain-of-function genetic screening followed by biochemical reconstitution, we show that HQ461 acts by promoting interaction between CDK12 and DDB1-CUL4-RBX1 E3 ubiquitin ligase, leading to polyubiquitination and proteasomal degradation of CDK12’s interacting protein Cyclin K (CCNK). Degradation of CCNK mediated by HQ461 compromised CDK12 function, leading to reduced phosphorylation of CDK12 substrate, downregulation of DNA damage response genes, and cell death. Structure-activity relationship analysis of HQ461 revealed the importance of a 5-methylthiazol-2-amine pharmacophore and resulted in an HQ461 derivate with improved potency. Our studies reveal a new molecular glue that engages its target protein directly with DDB1 to bypass the requirement of a substrate-specific receptor, presenting a new strategy for targeted protein degradation.
1
Citation3
0
Save
2

An improved auxin-inducible degron system for fission yeast

Xiao Zhang et al.Jul 20, 2021
ABSTRACT Conditional degron technologies, which allow a protein of interest to be degraded in an inducible manner, are important tools for biological research, and are especially useful for creating conditional loss-of-function mutants of essential genes. The auxin-inducible degron (AID) technology, which utilizes plant auxin signaling components to control protein degradation in non-plant species, is a widely used small-molecular-controlled degradation method in yeasts and animals. However, the currently available AID systems still have room for further optimization. Here, we have improved the AID system for the fission yeast Schizosaccharomyces pombe by optimizing all three components: the AID degron, the small-molecule inducer, and the inducer-responsive F-box protein. We chose a 36-amino-acid sequence of the Arabidopsis IAA17 protein as the degron and employed three tandem copies of it to enhance efficiency. To minimize undesirable side effects of the inducer, we adopted a bulky analog of auxin, 5-adamantyl-IAA, and paired it with the F-box protein OsTIR1 that harbors a mutation (F74A) at the auxin-binding pocket. 5-adamantyl-IAA, when utilized with OsTIR1-F74A, is effective at concentrations thousands of times lower than auxin used in combination with wild-type OsTIR1. We tested our improved AID system on 10 essential genes and achieved inducible lethality for all of them, including ones that could not be effectively inactivated using a previously published AID system. Our improved AID system should facilitate the construction of conditional loss-of-function mutants in fission yeast.
2
Citation2
0
Save
0

Selective degradation of multimeric proteins via chemically induced proximity to TRIM21

Peirong Lu et al.Feb 2, 2024
Abstract Targeted protein degradation (TPD) has emerged as an effective strategy to eliminate disease-causing proteins by inducing their interactions with the protein degradation machinery. First-generation TPD agents exploit a limited set of broadly expressed E3 ubiquitin ligases with constitutive activity, forbidding their application to proteins requiring higher levels of targeting selectivity. Here, by phenotype-based screening, we discovered that the antipsychotic drug acepromazine possesses interferon-enhanced cytotoxicity towards cancer cell lines expressing high levels of aldo-keto reductases 1C. These enzymes convert acepromazine into its stereo-selective metabolite ( S )-hydroxyl-acepromazine, which recruits the interferon-induced E3 ubiquitin ligase TRIM21 to the vicinity of the nuclear pore complex, resulting in the degradation of nuclear pore proteins. Co-crystal structures of acepromazine and derivatives in complex with the PRYSPRY domain of TRIM21 revealed a ligandable pocket, which was exploited for designing heterobifunctional degraders. The resulting chemicals selectively degrade multimeric proteins— such as those in biomolecular condensates—without affecting monomeric proteins, consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies have been causally linked to diseases such as neurodegeneration, autoimmunity, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.