MS
Maria Spies
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(86% Open Access)
Cited by:
3
h-index:
35
/
i10-index:
64
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA

Sarah Hengel et al.Aug 21, 2024
+10
C
K
S
Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.
0
Citation2
0
Save
0

The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA

Sarah Hengel et al.Feb 15, 2024
+10
J
K
S
Abstract Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1 and SWS1. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter SWS1 complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.
0
Citation1
0
Save
0

Dynamics and Selective Remodeling of the DNA Binding Domains of RPA

Nilisha Pokhrel et al.Oct 4, 2018
+8
E
C
N
Replication protein A (RPA) coordinates important DNA metabolic events by stabilizing single strand DNA (ssDNA) intermediates, activating the DNA damage response, and handing off ssDNA to appropriate downstream players. Six DNA binding domains (DBDs) in RPA promote high affinity binding to ssDNA, but also allow RPA displacement by lower affinity proteins. We have made fluorescent versions of RPA and visualized the conformational dynamics of individual DBDs in the context of the full-length protein. We show that both DBD-A and DBD-D rapidly bind to and dissociate from ssDNA, while RPA as a whole remains bound to ssDNA. The recombination mediator protein Rad52 selectively modulates the dynamics of DBD-D. This demonstrates how RPA interacting proteins, with lower ssDNA binding affinity, can access the occluded ssDNA and remodel individual DBDs to replace RPA.
10

RPA complexes inCaenorhabditis elegansmeiosis; unique roles in replication, meiotic recombination and apoptosis

Adam Hefel et al.Jun 28, 2020
+3
K
N
A
Abstract Replication Protein A (RPA) is critical complex that acts in replication and promotes homologous recombination by allowing recombinase recruitment to processed DSB ends. Most organisms possess three RPA subunits (RPA1, RPA2, RPA3) that form a trimeric complex critical for viability. The Caenorhabditis elegans genome encodes for RPA-1, RPA-2 and an RPA-2 paralog RPA-4. In our analysis, we determine that RPA-2 is critical for germline replication, and normal repair of meiotic DSBs. Interestingly, RPA-1 but not RPA-2 is essential for replication, contradictory to what is seen in other organisms, that require both subunits. In the germline, both RPA-1/2 and RPA-1/4 complexes form, but RPA-1/4 is less abundant and its formation is repressed by RPA-2. While RPA-4 does not participate in replication or recombination, we find that RPA-4 inhibit RAD-51 filament formation and promotes apoptosis on a subset of damaged nuclei. Altogether these findings point to sub-functionalization and antagonistic roles of RPA complexes in C. elegans .
23

Switch-like control of helicase processivity by single-stranded DNA binding protein

Barbara Stekas et al.Jul 9, 2020
Y
M
M
B
Helicases utilize the energy of NTP hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins which regulate helicase function. For example, single-stranded DNA binding proteins are known to enhance helicase activity, although the underlying mechanisms remain largely unknown. F. acidarmanus XPD helicase serves as a model for understanding the molecular mechanisms of Superfamily 2B helicases, and previous work has shown that its activity is enhanced by the cognate single-stranded DNA binding protein RPA2. Here, single-molecule optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent “processivity switch” in XPD. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.
14

Human hnRNPA1 reorganizes telomere-bound Replication Protein A

Sophie Granger et al.May 12, 2023
+13
V
S
S
Abstract Human replication protein A (RPA) is a heterotrimeric ssDNA binding protein responsible for many aspects of cellular DNA metabolism. The binding and dissociation of the four individual DNA binding domains (DBDs) from DNA result in configurational dynamics of the RPA-DNA complexes. This dynamics is essential for replacement of RPA by downstream proteins in various cellular metabolic pathways. RPA plays several important functions at telomeres where it binds to and melts telomeric G-quadruplexes, non-canonical DNA structures formed at the G-rich telomeric ssDNA overhangs. Here, we combine single-molecule total internal reflection fluorescence microscopy (smTIRFM) and mass photometry (MP) with biophysical and biochemical analyses to demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) specifically remodels RPA bound to telomeric ssDNA by dampening the RPA configurational dynamics and forming a stable ternary complex. Uniquely, among hnRNPA1 target RNAs, telomeric repeat-containing RNA (TERRA) is selectively capable of releasing hnRNPA1 from the RPA-telomeric DNA complex. We speculate that this telomere specific RPA-DNA-hnRNPA1 complex is an important structure in telomere protection. One Sentence Summary At the single-stranded ends of human telomeres, the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) binds to and modulates conformational dynamics of the ssDNA binding protein RPA forming a ternary complex which is controlled by telomeric repeat-containing RNA (TERRA).
1

Trans-complementation by the RecB nuclease domain of RecBCD enzyme reveals new insight into RecA loading upon χ recognition

Theetha Pavankumar et al.May 14, 2023
+2
Y
C
T
Summary The loading of RecA onto ssDNA by RecBCD is an essential step of RecBCD-mediated homologous recombination. RecBCD facilitates RecA-loading onto ssDNA in a χ-dependent manner via its RecB nuclease domain (RecB n ). Before recognition of χ, RecB n is sequestered through interactions with RecBCD. It was proposed that upon χ-recognition, RecB n undocks, allowing RecB n to swing out via a contiguous 70 amino acid linker to reveal the RecA-loading surface, and then recruit and load RecA onto ssDNA. We tested this hypothesis by examining the interactions between RecB n (RecB 928–1180 ) and truncated RecBCD (RecB 1–927 CD) lacking the nuclease domain. The reconstituted complex of RecB 1–927 CD and RecB n is functional in vitro and in vivo . Our results indicate that despite being covalently severed from RecB 1–927 CD, RecB n can still load RecA onto ssDNA, establishing that RecB n does not function at the end of its flexible linker. Instead, RecBCD undergoes a χ-induced intramolecular rearrangement to reveal a RecA-loading surface.
0

Contrasting roles of different mismatch repair proteins in basal-like breast cancer

Jiao Mo et al.Jul 22, 2023
+10
S
N
J
Abstract The mismatch repair (MMR) pathway is known as a tumor suppressive pathway and genes involved in MMR are commonly mutated in hereditary colorectal or other cancer types. However, the function of MMR genes/proteins in breast cancer progression and metastasis are largely unknown. We found that MSH2, but not MLH1, is highly enriched in basal-like breast cancer (BLBC) and that its protein expression is inversely correlated with overall survival time (OS). MSH2 expression is frequently elevated due to genomic amplification or gain-of-expression in BLBC, which results in increased MSH2 protein to pair with MSH6 (collectively referred to as MutSα). Genetic deletion of MSH2 or MLH1 results in a contrasting phenotype in metastasis, with MSH2 -deletion leading to reduced metastasis and MLH1 -deletion to enhanced liver or lung metastasis. Mechanistically, MSH2 -deletion induces the expression of a panel of chemokines in BLBC via epigenetic and/or transcriptional regulation, which leads to an immune reactive tumor microenvironment (TME) and elevated immune cell infiltrations. MLH1 is not correlated with chemokine expression and/or immune cell infiltration in BLBC, but its deletion results in strong accumulation of neutrophils that are known for metastasis promotion. Our study supports the differential functions of MSH2 and MLH1 in BLBC progression and metastasis, which challenges the paradigm of the MMR pathway as a universal tumor suppressive mechanism.
0

Human RAD52 double-ring remodels replication forks restricting fork reversal

Masayoshi Honda et al.Nov 14, 2023
+10
P
M
M
Human RAD52 1,2 is a multifunctional DNA repair protein involved in several cellular events that support genome stability including protection of stalled DNA replication forks from excessive degradation 3-7 . In its gatekeeper role, RAD52 binds to and stabilizes stalled replication forks during replication stress protecting them from reversal by SMARCAL1 5 . The structural and molecular mechanism of the RAD52-mediated fork protection remains elusive. Here, using P1 nuclease sensitivity, biochemical and single-molecule analyses we show that RAD52 dynamically remodels replication forks through its strand exchange activity. The presence of the ssDNA binding protein RPA at the fork modulates the kinetics of the strand exchange without impeding the reaction outcome. Mass photometry and single-particle cryo-electron microscopy show that the replication fork promotes a unique nucleoprotein structure containing head-to-head arrangement of two undecameric RAD52 rings with an extended positively charged surface that accommodates all three arms of the replication fork. We propose that the formation and continuity of this surface is important for the strand exchange reaction and for competition with SMARCAL1.
1

Single-molecule analysis of the improved variants of the G-quadruplex recognition protein G4P

Paras Gaur et al.May 9, 2023
+3
F
S
P
Abstract As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al . synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro , and to display better selectivity towards G4s than the previously published BG4 antibody. To get insight into the G4P-G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein’s affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Load More