Abstract Replication Protein A (RPA) is critical complex that acts in replication and promotes homologous recombination by allowing recombinase recruitment to processed DSB ends. Most organisms possess three RPA subunits (RPA1, RPA2, RPA3) that form a trimeric complex critical for viability. The Caenorhabditis elegans genome encodes for RPA-1, RPA-2 and an RPA-2 paralog RPA-4. In our analysis, we determine that RPA-2 is critical for germline replication, and normal repair of meiotic DSBs. Interestingly, RPA-1 but not RPA-2 is essential for replication, contradictory to what is seen in other organisms, that require both subunits. In the germline, both RPA-1/2 and RPA-1/4 complexes form, but RPA-1/4 is less abundant and its formation is repressed by RPA-2. While RPA-4 does not participate in replication or recombination, we find that RPA-4 inhibit RAD-51 filament formation and promotes apoptosis on a subset of damaged nuclei. Altogether these findings point to sub-functionalization and antagonistic roles of RPA complexes in C. elegans .