A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
EV
Elisabeth Vogelsang
Author with expertise in Notch Signaling Pathway in Development and Disease
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
2,509
h-index:
14
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio

Pascal Haffter et al.Dec 1, 1996
ABSTRACT In a large-scale screen, we isolated mutants displaying a specific visible phenotype in embryos or early larvae of the zebrafish, Danio rerio. Males were mutagenized with ethylnitrosourea (ENU) and F2 families of single pair matings between sibling F1 fish, heterozygous for a mutagenized genome, were raised. Egg lays were obtained from several crosses between F2 siblings, resulting in scoring of 3857 mutagenized genomes. F3 progeny were scored at the second, third and sixth day of development, using a stereo-microscope. In a subsequent screen, fixed embryos were analyzed for correct retinotectal projection. A total of 4264 mutants were identified. Two thirds of the mutants displaying rather general abnormalities were eventually discarded. We kept and characterized 1163 mutants. In complementation crosses performed between mutants with similar phenotypes, 894 mutants have been assigned to 372 genes. The average allele frequency is 2.4. We identified genes involved in early development, notochord, brain, spinal cord, somites, muscles, heart, circulation, blood, skin, fin, eye, otic vesicle, jaw and branchial arches, pigment pattern, pigment formation, gut, liver, motility and touch response. Our collection contains alleles of almost all previously described zebrafish mutants. From the allele frequencies and other considerations we estimate that the 372 genes defined by the mutants probably represent more than half of all genes that could have been discovered using the criteria of our screen. Here we give an overview of the spectrum of mutant phenotypes obtained, and discuss the limits and the potentials of a genetic saturation screen in the zebrafish.
0
Citation1,634
0
Save
0

Zebrafish pigmentation mutations and the processes of neural crest development

Robert Kelsh et al.Dec 1, 1996
ABSTRACT Neural crest development involves cell-fate specification, proliferation, patterned cell migration, survival and differentiation. Zebrafish neural crest derivatives include three distinct chromatophores, which are well-suited to genetic analysis of their development. As part of a large-scale mutagenesis screen for embryonic/early larval mutations, we have isolated 285 mutations affecting all aspects of zebrafish larval pigmentation. By complementation analysis, we define 94 genes. We show here that comparison of their phenotypes permits classification of these mutations according to the types of defects they cause, and these suggest which process of neural crest development is probably affected. Mutations in eight genes affect the number of chromatophores: these include strong candidates for genes necessary for the processes of pigment cell specification and proliferation. Mutations in five genes remove part of the wild-type pigment pattern, and suggest a role in larval pigment pattern formation. Mutations in five genes show ectopic chromatophores in distinct sites, and may have implications for chromatophore patterning and proliferation. 76 genes affect pigment or morphology of one or more chromatophore types: these mutations include strong candidates for genes important in various aspects of chromatophore differentiation and survival. In combination with the embryological advantages of zebrafish, these mutations should permit cellular and molecular dissection of many aspects of neural crest development.
0
Citation438
0
Save
0

Mutations affecting the cardiovascular system and other internal organs in zebrafish

Jau‐Nian Chen et al.Dec 1, 1996
ABSTRACT In a screen for early developmental mutants of the zebrafish, we have identified mutations specifically affecting the internal organs. We identified 53 mutations affecting the cardiovascular system. Nine of them affect specific landmarks of heart morphogenesis. Mutations in four genes cause a failure in the fusion of the bilateral heart primordia, resulting in cardia bifida. In lonely atrium, no heart venticle is visible and the atrium is directly fused to the outflow tract. In the overlooped mutant, the relative position of the two heart chambers is distorted. The heart is enormously enlarged in the santa mutant. In two mutants, scotch tape and superglue, the cardiac jelly between the two layers of the heart is significantly reduced. We also identified a number of mutations affecting the function of the heart. The mutations affecting heart function can be subdivided into two groups, one affecting heart contraction and another affecting the rhythm of the heart beat. Among the contractility group of mutants are 5 with no heart beat at all and 15 with a reduced heart beat of one or both chambers. 6 mutations are in the rhythmicity group and specifically affect the beating pattern of the heart. Mutations in two genes, bypass and kurzschluss, cause specific defects in the circulatory system. In addition to the heart mutants, we identified 23 mutations affecting the integrity of the liver, the intestine or the kidney. In this report, we demonstrate that it is feasible to screen for genes specific for the patterning or function of certain internal organs in the zebrafish. The mutations presented here could serve as an entrypoint to the establishment of a genetic hierarchy underlying organogenesis.
0
Citation437
0
Save
1

Differential regulation of the proteome and phosphosproteome along the dorso-ventral axis of the earlyDrosophilaembryo

Juan Gomez et al.Aug 25, 2023
Abstract The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3399 and 3433 respectively, were differentially regulated. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll 10B and serpin27a ex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.
0

Lysosomal uptake of mtDNA mitigates heteroplasmy

Parisa Kakanj et al.Feb 16, 2024
Mitochondrial DNA is exposed to multiple insults produced by normal cellular function. Upon mtDNA replication stress the mitochondrial genome transfers to endosomes where it is degraded. Here, using proximity proteomics we found that mtDNA replication stress leads to the rewiring of the mitochondrial proximity proteome, increasing mitochondria association with lysosomal and vesicle-associated proteins, such as the GTPase RAB10 and the retromer. We found that upon mtDNA replication stress, RAB10 enhances mitochondrial fragmentation and relocates from the ER to lysosomes containing mtDNA. The retromer enhances and coordinates the expulsion of mitochondrial matrix components through mitochondrial-derived vesicles, and mtDNA with direct transfer to lysosomes. Using a Drosophila model carrying a long deletion on the mtDNA (ΔmtDNA), we evaluated in vivo the role of the retromer in mtDNA extraction and turnover in the larval epidermis. The presence of ΔmtDNA elicits the activation of a specific transcriptome profile related to counteract mitochondrial damage. Expression of the retromer component Vps35 is sufficient to restore mtDNA homoplasmy and mitochondrial defects associated with ΔmtDNA. Our data reveal novel regulators involved in the specific elimination of mtDNA. We demonstrate that modulation of the retromer in vivo is a successful mechanism to restore mitochondrial function associated with mtDNA damage.