ZN
Zeribe Nwosu
Author with expertise in Pancreatic Cancer Research and Treatment
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
874
h-index:
22
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cancer SLC43A2 alters T cell methionine metabolism and histone methylation

Yingjie Bian et al.Sep 2, 2020
Abnormal epigenetic patterns correlate with effector T cell malfunction in tumours1–4, but the cause of this link is unknown. Here we show that tumour cells disrupt methionine metabolism in CD8+ T cells, thereby lowering intracellular levels of methionine and the methyl donor S-adenosylmethionine (SAM) and resulting in loss of dimethylation at lysine 79 of histone H3 (H3K79me2). Loss of H3K79me2 led to low expression of STAT5 and impaired T cell immunity. Mechanistically, tumour cells avidly consumed methionine and outcompeted T cells for methionine by expressing high levels of the methionine transporter SLC43A2. Genetic and biochemical inhibition of tumour SLC43A2 restored H3K79me2 in T cells, thereby boosting spontaneous and checkpoint-induced tumour immunity. Moreover, methionine supplementation improved the expression of H3K79me2 and STAT5 in T cells, and this was accompanied by increased T cell immunity in tumour-bearing mice and patients with colon cancer. Clinically, tumour SLC43A2 correlated negatively with T cell histone methylation and functional gene signatures. Our results identify a mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumour microenvironment. Thus, cancer methionine consumption is an immune evasion mechanism, and targeting cancer methionine signalling may provide an immunotherapeutic approach. Expression of the transporter SLC43A2 by tumour cells allows them to outcompete T cells for methionine and thereby disrupt the survival and function of tumour-infiltrating T cells.
0

Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer

Nina Steele et al.Jan 25, 2021
Abstract Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. Experimental Design: We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. Results: We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. Conclusions: Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.
0
Citation197
0
Save
25

Nutrient profiling reveals extracellular uridine as a fuel for pancreatic cancer through uridine phosphorylase 1

Matthew Ward et al.Jun 8, 2021
Abstract Pancreatic ductal adenocarcinoma (PDA) is a lethal disease characterized by high invasiveness, therapeutic resistance, and metabolic aberrations. Although altered metabolism drives PDA growth and survival, the complete spectrum of metabolites used as nutrients by PDA remains largely unknown. Here, we aimed to determine novel nutrients utilized by PDA. We assessed how >175 metabolites impacted metabolic activity in 19 PDA cell lines under nutrient-restricted conditions. This analysis identified uridine as a novel metabolite driver of PDA survival in glucose-deprived conditions. Uridine utilization strongly correlated with expression of the enzyme uridine phosphorylase 1 (UPP1). Metabolomics profiling, notably 13 C-stable isotope tracing, revealed that uridine-derived ribose is the relevant component supporting redox balance, survival, and proliferation in glucose-deprived PDA cells. We demonstrate that UPP1 catabolizes uridine, shunting its ribose component into central carbon metabolism to support glycolysis, the tricarboxylic acid (TCA) cycle and nucleotide biosynthesis. Compared to non-tumoral tissues, we show that PDA tumors express high UPP1 , which correlated with poor overall survival in multiple patient cohorts. Further, uridine is enriched in the pancreatic tumor microenvironment, and we demonstrate that this may be provided in part by tumor associated macrophages. Finally, we found that inhibition of UPP1 restricted the ability of PDA cells to use uridine, and that UPP1 knockout impairs tumor growth in vivo . Our data identifies uridine catabolism as a critical aspect of compensatory metabolism in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.
25
Citation4
0
Save
36

The Pancreatic Tumor Microenvironment Compensates for Loss of GOT2

Samuel Kerk et al.Aug 7, 2020
ABSTRACT The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) restricts vascularization and, consequently, access to blood-derived nutrients and oxygen, which impacts tumor growth. Intracellular redox imbalance is another restraint on cellular proliferation, yet it is unknown if the TME contributes to the maintenance of redox homeostasis in PDA cells. Here, we demonstrate that the loss of mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2), a component in the malate-aspartate shuttle, disturbs redox homeostasis and halts proliferation of PDA cells in vitro. In contrast, GOT2 inhibition has no effect on in vivo tumor growth or tumorigenesis in an autochthonous model. We propose that this discrepancy is explained by heterocellular pyruvate exchange from the TME, including from cancer associated fibroblasts. More broadly, pyruvate similarly confers resistance to inhibitors of mitochondrial respiration. Genetic or pharmacologic inhibition of pyruvate uptake or metabolism abrogated pyruvate-mediated alleviation of reductive stress from NADH buildup. In sum, this work describes a potential resistance mechanism mediated by metabolic crosstalk within the pancreatic TME. These findings have important implications for metabolic treatment strategies since several mitochondrial inhibitors are currently in clinical trials for PDA and other cancers.
36
Citation4
0
Save
40

Therapeutic targeting of differentiation state-dependent metabolic vulnerabilities in DIPG

Nneka Mbah et al.Mar 3, 2022
ABSTRACT H3K27M diffuse intrinsic pontine gliomas (DIPG) exhibit cellular heterogeneity comprising less-differentiated, stem-like glioma cells that resemble oligodendrocyte precursors (OPC) and more differentiated astrocyte (AC)-like cells. H3K27M DIPG stem-like cells exhibit tumor-seeding capabilities in vivo , a feature lost or greatly diminished in the more differentiated AC-like cells. In this study, we established isogenic in vitro models of DIPG that closely recapitulated the OPC-like and AC-like phenotypes of DIPG cells. Using these tools, we performed transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs operative in the different cellular states. From this, we defined new strategies to selectively target metabolic vulnerabilities within the specific tumor populations. Namely, we showed that the AC-like cells exhibited a more mesenchymal phenotype and were thus sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulated cholesterol metabolism and mitochondrial oxidative phosphorylation (OXPHOS) and were accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors showed efficacy and extended survival in preclinical orthotopic models established with stem-like H3K27M DIPG cells. Together, this study demonstrates that cellular subtypes within DIPGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain.
40
Citation4
0
Save
20

Arginase 1 is a key driver of immune suppression in pancreatic cancer

Rosa Menjivar et al.Jun 24, 2022
Abstract An extensive fibroinflammatory stroma rich in macrophages is a hallmark of pancreatic cancer. In this disease, it is well appreciated that macrophages are immunosuppressive and contribute to the poor response to immunotherapy; however, the mechanisms of immune suppression are complex and not fully understood. Immunosuppressive macrophages are classically defined by expression of the enzyme Arginase 1 (Arg1), which we demonstrated is potently expressed in pancreatic tumor associated macrophages from both human patients and mouse models. While routinely used as a polarization marker, Arg1 also catabolizes arginine, an amino acid required for T cell activation and proliferation. To investigate this metabolic function, we used a genetic and a pharmacologic approach to target Arg1 in pancreatic cancer. Genetic inactivation of Arg1 in macrophages, using a dual recombinase genetically engineered mouse model of pancreatic cancer, delayed formation of invasive disease, while increasing CD8 + T cell infiltration. Treatment of established tumors with the arginase inhibitor CB-1158 exhibited further increased CD8 + T cell infiltration, beyond that seen with the macrophage-specific knockout, and sensitized the tumors to anti-PD1 immune checkpoint blockade. Thus, our data demonstrate that Arg1 is more than simply a marker of macrophage function. Rather, Arg1 is also a driver of immune suppression and represents a promising immunotherapeutic target for pancreatic cancer.
20
Citation2
0
Save
0

Epigenetic Reprogramming of Autophagy Drives Mutant IDH1 Glioma Progression and Response to Radiation

Felipe Núñez et al.Mar 13, 2024
Abstract Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.
0
Citation1
0
Save
35

Multi-dimensional analyses identify genes of high priority for pancreatic cancer research

Zeribe Nwosu et al.May 28, 2021
Abstract Genomic profiling has unveiled the molecular subtypes and mutational landscape of pancreatic ductal adenocarcinoma (PDAC). However, there is a knowledge gap on the consistency of gene expression across PDAC tumors profiled in independent studies and this limits follow up research. To facilitate novel drug target prioritization and biomarker discovery, we investigated the most consistently expressed genes in human PDAC. We identified ~4,000 genes highly or lowly expressed in at least 4 of 5 microarrays (adjusted P <0.05) and validated their expression pattern in additional datasets, bulk tumor and single-cell RNA sequencing samples. Over 50% of the genes were previously uncharacterized in PDAC; many correlated with proliferation, metastasis, mutation, tumor grade, and ~41% predicted overall survival. We identified 185 high-priority targets (notably in cell cycle and glycolysis) whose inhibition suppressed PDAC cell viability in multiple RNA interference datasets and these genes predicted treatment in mouse models. Our results represent important milestone in the quest for mechanisms, drug targets and biomarkers in PDAC, and originate from an adaptable analytical concept that can aid discovery in other cancers. Highlights Identifies ~4,000 consistent genes across PDAC microarrays, >50% of which have not been studied Glycolysis and cell cycle are the most consistent processes in PDAC Heterogeneous pathways underlie or correlate with clinicopathological variables Identifies 205 genes with similar expression pattern in PDAC tissues and peripheral blood Highlights 185 upregulated genes that are high priority therapeutic targets in PDAC
35
Citation1
0
Save
0

EGF/STAT1 signals to maintain ECM1 expression in hepatic homeostasis are disrupted by IFNγ/NRF2 in chronic liver disease

Yujia Li et al.Feb 19, 2024
Objective In healthy livers, latent transforming growth factor-β (LTGF-β) is stored in the extracellular matrix and kept quiescent by extracellular matrix protein 1 (ECM1). Upon damage, ECM1 is downregulated in hepatocytes, facilitating LTGF-β activation and hepatic fibrosis. This study investigates the underlying molecular mechanisms by which ECM1 expression in the liver is controlled under patho-physiological conditions. Design In silico promoter analysis was used to predict pathways that regulate Ecm1 transcription. Functional assays were performed in AML12 cells, mouse and human primary hepatocytes (MPHs, HPHs), and in liver tissue of mice and patients. Results In healthy liver, EGF/Egfr signaling maintains Ecm1 expression through phosphorylation of Stat1 at S727, which promotes its binding to the Ecm1 gene promoter to enhance gene transcription. During liver inflammation, accumulated IFNγ interferes with EGF signaling by downregulating Egfr expression and by disrupting EGF/Egfr/Stat1-mediated Ecm1 promoter binding. Mechanistically, IFNγ induces Stat1 phosphorylation at position Y701, which is competing with the ability of p-Stat1 S727 to bind to the Ecm1 gene promoter. Additionally, IFNγ induces Nrf2 nuclear translocation and repressive binding to the Ecm1 gene promoter, thus further reducing Ecm1 expression. Importantly, patients suffering from liver cirrhosis who lack nuclear NRF2 expression consistently maintain higher levels of ECM1, inferring a better prognosis. Conclusion ECM1 expression in healthy livers is controlled by EGF/EGFR/STAT1 signaling. Upon liver injury, ECM1 expression is repressed by accumulating IFNγ/NRF2, leading to increased LTGF-β activation and the onset of hepatic fibrosis.
Load More