AK
Andreas Krämer
Author with expertise in Role of Hippo Signaling Pathway in Mechanotransduction
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(69% Open Access)
Cited by:
4
h-index:
24
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization

Martin Schwalm et al.Jan 11, 2023
+5
A
A
M
Abstract The multistep PROTAC (PROteolysis TArgeting Chimeras) degradation process poses challenges for their rational development, as rate limiting steps determining PROTAC efficiency remain largely unknown. Moreover, the slow throughput of currently used endpoint assays does not allow the comprehensive analysis of larger series of PROTACs. Here we developed cell-based assays using NanoLuciferase and HaloTags, that allow measuring PROTAC induced degradation and ternary complex formation kinetics and stability in cells. Using PROTACs developed for degradation of WDR5, the characterization of the mode of action of these PROTACs in the early degradation cascade revealed a key role of ternary complex formation and stability. Comparing a series of ternary complex crystal structures highlighted the importance of an efficient E3-target interface for ternary complex stability. The developed assays outline a strategy for the rational optimization of PROTACs using a series of live cell assays monitoring key steps of the early PROTAC induced degradation pathway. Significance The multistep PROTAC induced degradation process of a POI poses a significant challenge for the rational design of these bifunctional small molecules as critical steps that limit PROTAC efficacy cannot be easily assayed at required throughput. In addition, the cellular location of the POI may pose additional challenges as some cellular compartments, such as the nucleus, may not be easily reached by PROTAC molecules and the targeted E3 ligases may not be present in this cellular compartment. We propose therefore a comprehensive assay panel for PROTACs evaluation in cellular environments using a sensor system that allows continuous monitoring of the protein levels of the endogenous POI. We developed a cell line expressing WDR5 from its endogenous locus in fusion with a small sequence tag (HiBIT) that can be reconstituted to functional NanoLuciferase (NLuc). This system allowed continuous monitoring of endogenous WDR5 levels in cells and together with HaloTag system also the continuous monitoring of ternary complex (E3, WDR5 and PROTAC) formation. As this assay can be run at high throughput, we used this versatile system monitoring three diverse chemical series of WDR5 PROTACs that markedly differ in their degradation properties. Monitoring cell penetration, binary complex formation (PROTAC-WDR5 and PROTAC-VHL) as well as ternary complex formation we found that PROTAC efficiency highly correlated with synergy of ternary complex formation in cells. This study represents a first data set on diverse PROTACs studying this property in cellulo and it outlines a strategy for the rational optimization of PROTACs. It also provided kinetic data on ternary complex assembly and dissociation that may serve as a benchmark for future studies utilizing also kinetic properties for PROTAC development. Comparative structural studies revealed larger PROTAC mediated interaction surfaces for PROTACs that efficiently formed ternary complexes highlighting the utility of structure based optimization of PROTAC induced ternary complexes in the development process.
8
Citation2
0
Save
0

More than an Amide Bioisostere: Discovery of 1,2,4-Triazole-containing Pyrazolo[1,5-a]pyrimidine Host CSNK2 Inhibitors for Combatting β-Coronavirus Replication

Han Ong et al.Jul 3, 2024
+15
E
R
H
The pyrazolo[1,5-a]pyrimidine scaffold is a promising scaffold to develop potent and selective CSNK2 inhibitors with antiviral activity against β-coronaviruses. Herein, we describe the discovery of a 1,2,4-triazole group to substitute a key amide group for CSNK2 binding present in many potent pyrazolo[1,5-a]pyrimidine inhibitors. Crystallographic evidence demonstrates that the 1,2,4-triazole replaces the amide in forming key hydrogen bonds with Lys68 and a water molecule buried in the ATP-binding pocket. This isosteric replacement improves potency and metabolic stability at a cost of solubility. Optimization for potency, solubility, and metabolic stability led to the discovery of the potent and selective CSNK2 inhibitor 53. Despite excellent in vitro metabolic stability, rapid decline in plasma concentration of 53 in vivo was observed and may be attributed to lung accumulation, although in vivo pharmacological effect was not observed. Further optimization of this novel chemotype may validate CSNK2 as an antiviral target in vivo.
0
Citation1
0
Save
0

Synthesis and evaluation of chemical linchpins for highly selective CK2α targeting

Francesco Greco et al.Jul 14, 2024
+7
L
A
F
Casein kinase-2 (CK2) are serine/threonine kinases with dual co-factor (ATP and GTP) specificity, that are involved in the regulation of a wide variety of cellular functions. Small molecules targeting CK2 have been described in the literature targeting different binding pockets of the kinase with a focus on type I inhibitors such as the recently published chemical probe SGC-CK2-1. In this study, we investigated whether known allosteric inhibitors binding to a pocket adjacent to helix αD could be combined with ATP mimetic moieties defining a novel class of ATP competitive compounds with a unique binding mode. Linking both binding sites requires a chemical linking moiety that would introduce a 90-degree angle between the ATP mimetic ring system and the αD targeting moiety, which was realized using a sulfonamide. The synthesized inhibitors were highly selective for CK2 with binding constants in the nM range and low micromolar activity. While these inhibitors need to be further improved, the present work provides a structure-based design strategy for highly selective CK2 inhibitors.
0
Citation1
0
Save
0

Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators

Dimitrios-Ilias Balourdas et al.Jun 11, 2024
+2
A
A
D
Summary The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8–17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.
0

Identification of 2-(4′-carboxyphenyl)-6-indolopyrazines as CSNK2A inhibitors with antiviral activity and improved selectivity over PIM3

Kareem Galal et al.Jan 1, 2023
+4
A
N
K
We report the synthesis of 2,6-disubstituted pyrazines as potent cell active CSNK2A inhibitors. 4′-Carboxyphenyl was found to be the optimal 2-pyrazine substituent for CSNK2A activity, with little tolerance for additional modification. At the 6-position, modifications of the 6-isopropylaminoindazole substituent were explored to improve selectivity over PIM3 while maintaining potent CSNK2A inhibition. The 6-isopropoxyindole analogue 6c was identified as a nanomolar CSNK2A inhibitor with 30-fold selectivity over PIM3 in cells. Replacement of the 6-isopropoxyindole by isosteric ortho-methoxy anilines, such as 7b and 7c, also generated analogues with selectivity for CSNK2A over PIM3 and also improved the kinome-wide selectivity. The optimized 2,6-disubstituted pyrazines showed inhibition of viral replication consistent with their CSNK2A activity.
0

Back-pocket optimization of 2-aminopyrimidine-based macrocycles leads to potent dual EPHA2/GAK kinase inhibitors with antiviral activity

Joshua Gerninghaus et al.Feb 18, 2024
+15
R
S
J
Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here, we developed a 2-aminopyrimidine-based macrocyclic dual EPHA2/GAK kinase inhibitor as a chemical tool to study the role of these two kinases in viral entry and assembly. Starting with a promiscuous macrocyclic inhibitor,
0

Synthesis and evaluation of chemical linchpins for highly selective CK2α targeting

Francesco Greco et al.May 16, 2024
+7
L
A
F
Abstract Casein kinase-2 (CK2) are serine/threonine kinases with dual co-factor (ATP and GTP) specificity, that are involved in the regulation of a wide variety of cellular functions. Small molecules targeting CK2 have been described in the literature targeting different binding pockets of the kinase with a focus on type I inhibitors such as the recently published chemical probe SGC-CK2-1. In this study, we investigated whether known allosteric inhibitors binding to a pocket adjacent to helix αD could be combined with ATP mimetic moieties defining a novel class of ATP competitive compounds with a unique binding mode. Linking both binding sites requires a chemical linking moiety that would introduce a 90-degree angle between the ATP mimetic ring system and the αD targeting moiety, which was realized using a sulfonamide. The synthesized inhibitors were highly selective for CK2 with binding constants in the nM range and low micromolar activity. While these inhibitors need to be further improved, the present work provides a structure-based design strategy for highly selective CK2 inhibitors.
1

Synthesis of pyrazole-based macrocycles leads to a highly selective inhibitor for MST3

Jennifer Amrhein et al.Jan 1, 2023
+11
M
S
J
MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20 kinase (MST) family. MSTs regulate key cellular functions such as cell proliferation, cell migration, metabolic regulation, and cell polarity. The MST3 isozyme plays a role in regulation of cell growth, autophagy and apoptosis, and its dysregulation has been linked to the occurrence of high-grade tumors with poor survival prognosis. To date, there are no isoform-selective inhibitors available that could be used for validating the role of MST3 in tumorigenesis and to assess its potential as an anti-cancer target for drug development. To this end, we have designed a new series of 3-aminopyrazole-based macrocycles based on the structure of an acyclic promiscuous kinase inhibitor. By varying moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 with an EC50 = 106 nM and excellent kinome-wide selectivity with significantly lower cellular activity on the closely related kinase MST4 (EC50 = 1.4 uM). The high-resolution crystal structure of the MST3-JA310 complex provided intriguing insights into the distinct binding mode of the macrocycle, which was associated with large-scale structural rearrangements, including concerted induced-fit movements of the glycine-rich loop, the alphaC helix, and the activation loop. In summary, the developed macrocyclic MST3 inhibitor, JA310, demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents a first chemical probe for MST3.
5

5-iodotubercidin sensitizes cells to RIPK1-dependent necroptosis by interfering with NFκB signaling

Chanchal Chauhan et al.Mar 3, 2023
+4
S
A
C
Abstract Receptor-interacting protein kinases (RIPK) −1 and −3 are master regulators of cell fate decisions in response to diverse stimuli and are subjected to multiple checkpoint controls. Earlier studies have established the presence of distinct IKK1/2 and p38/MK2-dependent checkpoints which suppress RIPK1 activation by directly phosphorylating it at different residues. In the present study, we investigated TNF-induced death in MAPK-activated protein kinase 2 (MK2)-deficient cells and show that MK2-deficiency or inactivation predominantly results in necroptotic cell death, even in the absence of caspase inhibition. While MK2-deficient cells can be rescued from necroptosis by RIPK1 inhibitors, RIPK3 inhibition seems to revert the process triggering apoptosis. To understand the mechanism of this necroptosis switch, we screened a 149-compound kinase inhibitor library for compounds which preferentially sensitize MK2-deficient MEFs to TNF-induced cell death. The most potent inhibitor identified was 5-Iodotubericidin, an adenosine analogue acting as adenosine kinase and protein kinase inhibitor. 5-ITu also potentiated LPS-induced necroptosis when combined with MK2 inhibition in RAW264.7 macrophages. Further mechanistic studies revealed that 5-Iodotubericidin induces RIPK1-dependent necroptosis in the absence of MK2 activity by suppressing IKK signaling. The identification of this role for the multitarget kinase inhibitor 5-ITu in TNF-, LPS- and chemotherapeutics-induced necroptosis will have potential implications in RIPK1-targeted therapies.
1

Shifting the selectivity of pyrido[2,3-d]pyrimidin-7(8H)-one inhibitors towards the salt-inducible kinase (SIK) subfamily

Marcel Rak et al.Mar 24, 2023
+15
L
R
M
ABSTRACT Salt-inducible kinases 1-3 (SIK1-3) are key regulators of the LKB1-AMPK pathway and play an important role in cellular homeostasis. Dysregulation of any of the three isoforms has been associated with tumorigenesis in liver, breast, and ovarian cancers. We have recently developed the dual pan-SIK/group I p21-activated kinase (PAK) chemical probe MRIA9. However, inhibition of p21-activated kinases has been associated with cardiotoxicity in vivo , which complicates the use of MRIA9 as a tool compound. Here, we present a structure-based approach involving the back-pocket and gatekeeper residues, for narrowing the selectivity of pyrido[2,3-d]pyrimidin-7(8 H )-one-based inhibitors towards SIK kinases, eliminating PAK activity. Optimization was guided by high-resolution crystal structure analysis and computational methods, resulting in a pan-SIK inhibitor, MR22, which no longer exhibited activity on STE group kinases and displayed excellent selectivity in a representative kinase panel. MR22-dependent SIK inhibition led to centrosome dissociation and subsequent cell-cycle arrest in ovarian cancer cells, as observed with MRIA9, conclusively linking these phenotypic effects to SIK inhibition. Taken together, MR22 represents a valuable tool compound for studying SIK kinase function in cells.
Load More