AJ
A.C. Joerger
Author with expertise in The p53 Signaling Network in Cancer Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
1,833
h-index:
38
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Targeted rescue of a destabilized mutant of p53 by an in silico screened drug

Frank Boeckler et al.Jul 24, 2008
The tumor suppressor p53 is mutationally inactivated in ≈50% of human cancers. Approximately one-third of the mutations lower the melting temperature of the protein, leading to its rapid denaturation. Small molecules that bind to those mutants and stabilize them could be effective anticancer drugs. The mutation Y220C, which occurs in ≈75,000 new cancer cases per annum, creates a surface cavity that destabilizes the protein by 4 kcal/mol, at a site that is not functional. We have designed a series of binding molecules from an in silico analysis of the crystal structure using virtual screening and rational drug design. One of them, a carbazole derivative (PhiKan083), binds to the cavity with a dissociation constant of ≈150 μM. It raises the melting temperature of the mutant and slows down its rate of denaturation. We have solved the crystal structure of the protein–PhiKan083 complex at 1.5-Å resolution. The structure implicates key interactions between the protein and ligand and conformational changes that occur on binding, which will provide a basis for lead optimization. The Y220C mutant is an excellent “druggable” target for developing and testing novel anticancer drugs based on protein stabilization. We point out some general principles in relationships between binding constants, raising of melting temperatures, and increase of protein half-lives by stabilizing ligands.
0

Small molecule induced reactivation of mutant p53 in cancer cells

Xiangrui Liu et al.Apr 27, 2013
The p53 cancer mutant Y220C is an excellent paradigm for rescuing the function of conformationally unstable p53 mutants because it has a unique surface crevice that can be targeted by small-molecule stabilizers. Here, we have identified a compound, PK7088, which is active in vitro: PK7088 bound to the mutant with a dissociation constant of 140 μM and raised its melting temperature, and we have determined the binding mode of a close structural analogue by X-ray crystallography. We showed that PK7088 is biologically active in cancer cells carrying the Y220C mutant by a battery of tests. PK7088 increased the amount of folded mutant protein with wild-type conformation, as monitored by immunofluorescence, and restored its transcriptional functions. It induced p53-Y220C-dependent growth inhibition, cell-cycle arrest and apoptosis. Most notably, PK7088 increased the expression levels of p21 and the proapoptotic NOXA protein. PK7088 worked synergistically with Nutlin-3 on up-regulating p21 expression, whereas Nutlin-3 on its own had no effect, consistent with its mechanism of action. PK7088 also restored non-transcriptional apoptotic functions of p53 by triggering nuclear export of BAX to the mitochondria. We suggest a set of criteria for assigning activation of p53.
0
Citation205
0
Save
5

Functional diversity of theTP53mutome revealed by saturating CRISPR mutagenesis

Julianne Funk et al.Mar 10, 2023
Abstract The tumor suppressor gene TP53 is the most frequently mutated gene in various cancers. Unlike other tumor suppressors, TP53 is mostly hit by missense mutations, of which more than 2,000 have been described in cancer patients. To take advantage of TP53 mutation status for personalized therapy, a deeper knowledge of the functional ramifications of specific mutations is required as evidence of the functional heterogeneity of mutant p53 proteins mounts. Here, we report on a CRISPR-based saturation mutagenesis screen of 9,225 variants expressed from the endogenous TP53 gene locus of a cancer cell. By tracking changes in the abundance of individual variants in response to specific p53-pathway stimulation, we were able to construct high-resolution functional activity maps of the TP53 mutome, covering ∼94.5% of all cancer-associated missense mutations. The results demonstrate the impact of individual mutations on tumor cell fitness with unprecedented precision and coverage, even revealing underlying mechanisms such as apoptosis. The high discriminatory power also resolves subtle loss-of-function phenotypes and highlights a subset of mutants as particularly promising targets for pharmacological reactivation. Moreover, the data offer intriguing insight into the role of aberrant splicing and nonsense-mediated mRNA decay in clearing truncated proteins due to not only nonsense, frameshift, and splice-site mutations but also missense and synonymous mutations. Surprisingly, no missense mutation provided an immediate proliferative advantage over a null mutation. Nonetheless, cells with a missense, but not null mutations, acquired pro-metastatic properties after prolonged growth in mice, emphasizing the significance of mutant p53-directed clonal evolution in the progression of tumors towards metastasis.
5
Citation2
0
Save
1

Shifting the selectivity of pyrido[2,3-d]pyrimidin-7(8H)-one inhibitors towards the salt-inducible kinase (SIK) subfamily

Marcel Rak et al.Mar 24, 2023
ABSTRACT Salt-inducible kinases 1-3 (SIK1-3) are key regulators of the LKB1-AMPK pathway and play an important role in cellular homeostasis. Dysregulation of any of the three isoforms has been associated with tumorigenesis in liver, breast, and ovarian cancers. We have recently developed the dual pan-SIK/group I p21-activated kinase (PAK) chemical probe MRIA9. However, inhibition of p21-activated kinases has been associated with cardiotoxicity in vivo , which complicates the use of MRIA9 as a tool compound. Here, we present a structure-based approach involving the back-pocket and gatekeeper residues, for narrowing the selectivity of pyrido[2,3-d]pyrimidin-7(8 H )-one-based inhibitors towards SIK kinases, eliminating PAK activity. Optimization was guided by high-resolution crystal structure analysis and computational methods, resulting in a pan-SIK inhibitor, MR22, which no longer exhibited activity on STE group kinases and displayed excellent selectivity in a representative kinase panel. MR22-dependent SIK inhibition led to centrosome dissociation and subsequent cell-cycle arrest in ovarian cancer cells, as observed with MRIA9, conclusively linking these phenotypic effects to SIK inhibition. Taken together, MR22 represents a valuable tool compound for studying SIK kinase function in cells.
0

Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators

Dimitrios-Ilias Balourdas et al.Jun 11, 2024
Summary The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8–17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.
0

Development of selective pyrido[2,3-d]pyrimidin-7(8H)-one-based Mammalian STE20-like (MST3/4) kinase inhibitors

Marcel Rak et al.Jan 1, 2023
Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective MST3/4 inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity, high potency for MST3/4, and selectivity towards the closely related MST1/2. In combination with the MST1/2 inhibitor PF-06447475 (2) the two MST3/4 inhibitors can be used to elucidate the multiple roles of MST kinases in cells. We found that MST3/4-selective inhibition caused a cell cycle arrest in the G1 phase, while MST1/2 inhibition resulted in accumulation of cells in the G2/M phase. These data point to distinct functions of these closely related kinases, which can now be addressed with subfamily-selective chemical tool compounds.
Load More