CB
Chris Boutell
Author with expertise in Herpesviruses: Epidemiology, Pathogenesis, and Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
811
h-index:
33
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Herpes Simplex Virus Type 1 Immediate-Early Protein ICP0 and Its Isolated RING Finger Domain Act as Ubiquitin E3 Ligases In Vitro

Chris Boutell et al.Jan 15, 2002
ABSTRACT Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.
8

Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of the induction of IFN-mediated innate immune defences

Vanessa Herder et al.Dec 4, 2020
Abstract The pandemic spread of SARS-CoV-2, the etiological agent of COVID-19, represents a significant and ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection and inflammation that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 tropism and replication. Utilizing a 3D air-liquid interface (ALI) model that closely mimics the natural tissue physiology and cellular tropism of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. We show that temperature elevation induces wide-spread transcriptome changes that impact upon the regulation of multiple pathways, including epigenetic regulation and lncRNA expression, without disruption of general cellular transcription or the induction of interferon (IFN)-mediated antiviral immune defences. Respiratory tissue incubated at temperatures >37°C remained permissive to SARS-CoV-2 infection but severely restricted the initiation of viral transcription, leading to significantly reduced levels of intraepithelial viral RNA accumulation and apical shedding of infectious virus. To our knowledge, we present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication. Our data identify an important role for temperature elevation in the epithelial restriction of SARS-CoV-2 that occurs independently of the induction of canonical IFN-mediated antiviral immune defences and interferon-stimulated gene (ISG) expression.
8
Citation8
0
Save
3

Superinfection exclusion creates spatially distinct influenza virus populations

Anna Sims et al.Jun 6, 2022
Abstract Influenza viruses can interact during coinfections, allowing viral fitness to be altered by genome complementation and competition, and increasing population diversity through reassortment. However, opportunities for these interactions are limited, as coinfection is blocked shortly after primary infection by a process known as superinfection exclusion (SIE). We asked whether SIE, which occurs at the level of individual cells, could limit within-host interactions between populations of influenza viruses as they spread across regions of cells. We first created a simplified model of within-host spread by infecting monolayers of cells with two isogenic influenza A viruses, each encoding a different fluorophore, and measuring the proportion of coinfected cells. In this system SIE begins within 2-4 hours of primary infection, with the kinetics of onset defined by the dose of primary virus. We then asked how SIE controls opportunities for coinfection as viruses spread across a monolayer of cells. We observed that viruses spreading from a single coinfected focus continued to coinfect cells as they spread, as all new infections were of cells that had not yet established SIE. In contrast, viruses spreading towards each other from separately infected foci could only establish minimal regions of coinfection before SIE blocked further coinfection. This patterning was recapitulated in the lungs of infected mice and is likely to apply to other viruses that exhibit SIE. It suggests that the kinetics of SIE onset separate a spreading infection into discrete regions, within which interactions between virus populations can occur freely, and between which they are blocked. Importance Viral fitness and diversity are altered by genome interactions, which occur when multiple viruses coinfect a cell. This has been extensively studied for influenza A viruses (IAV), which use genome reassortment to adapt to new hosts and create pandemic strains, and whose replication can be compromised by the acquisition of defective-interfering RNAs. Coinfection of an individual cell by IAV is restricted by the gradual onset of superinfection exclusion (SIE). Replication of IAVs within host organisms involve the asynchronous replication of viruses as they spread to infect multiple cells. We found that under these circumstances, SIE creates spatially separated sub-populations of IAV, between which there are limited opportunities for genome interactions. Our work suggests SIE will cause many viruses to segregate into distinct subpopulations within their hosts, constraining the effects of genome interactions on their fitness and evolution.
3
Citation4
0
Save
1

Neuronal hyperexcitability is a DLK-dependent trigger of HSV-1 reactivation that can be induced by IL-1

Sean Cuddy et al.Apr 18, 2020
Abstract Herpes Simplex Virus (HSV) establishes a latent infection in neurons and periodically reactivates to cause disease. The neuronal stimuli that trigger HSV reactivation have not been fully elucidated. Here we demonstrate that HSV reactivation can be induced by neuronal hyperexcitability. Neuronal stimulation-induced reactivation was dependent on voltage-gated ion and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, demonstrating that neuronal activity is required for reactivation. Hyperexcitability-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and progressed via an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1β induces neuronal hyperexcitability and is released under conditions of stress and fever; both known triggers of clinical HSV reactivation. IL-1β induced histone phosphorylation in sympathetic neurons, and importantly HSV reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.
1

Zoonotic avian influenza viruses evade human BTN3A3 restriction

Rute Pinto et al.Jun 15, 2022
Abstract Cross-species transmission of avian influenza A viruses (IAVs) into humans could represent the first step of a future pandemic 1 . Multiple factors limiting the spillover and adaptation of avian IAVs in humans have been identified, but they are not sufficient to explain which virus lineages are more likely to cross the species barrier 1,2 . Here, we identified human BTN3A3 3 (butyrophilin subfamily 3 member A3) as a potent inhibitor of avian but not human IAVs. We determined that BTN3A3 is constitutively expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts at the early stages of virus replication by inhibiting avian IAV vRNA transcription. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F, or rarely 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, several serotypes of avian IAVs that spilled over into humans in recent decades evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure 4 . Importantly, we identified more than 150 avian IAV lineages with a BTN3A3-resistant genotype. In conclusion, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.
0

A Machine Learning Framework to Identify the Correlates of Disease Severity in Acute Arbovirus Infection

Vanessa Herder et al.Feb 24, 2024
Abstract Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1 IT2006 , BTV-1 IT2013 and BTV-8 FRA2017 ). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to identify the key viral and host processes associated with disease pathogenesis. We identified five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, our study using an agnostic machine learning approach, can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.
0

Single-genome analysis reveals heterogeneous association of the Herpes Simplex Virus genome with H3K27me2 and the reader PHF20L1 following infection of human fibroblasts

Alison Francois et al.Jan 1, 2023
The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear. To address this gap in knowledge, and with consideration that the fate of the viral genome and outcome of HSV-1 infection could be heterogeneous, we developed an assay to quantify the abundance of histone modifications within single viral genome foci of infected fibroblasts. Using this approach, combined with bulk epigenetic techniques, we were unable to detect any role for H3K27me3 during HSV-1 lytic infection of fibroblasts. In contrast, we could detect the lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent with a role for H3K27 demethylases in promoting lytic gene expression. This was consistent with a role for H3K27 demethylases in promoting lytic gene expression. In addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and this association was enhanced by inhibition of the H3K27 demethylases UTX and JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following infection with a transcriptionally defective virus in the absence of Promyelocytic leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in fibroblast-associated HSV genome silencing in a manner dependent on genome sub-nuclear localization and transcriptional activity.
1

PML-Dependent Memory of Type I Interferon Treatment Results in a Restricted Form of HSV Latency

Jon Suzich et al.Feb 5, 2021
Abstract Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency is unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also found that the subnuclear condensates, promyelocytic leukemia-nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalized with PML-NBs throughout a latent infection of neurons only when type I IFN was present during initial infection. Depletion of PML prior to or following infection did not impact the establishment latency; however, it did rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.
0

Daxx mediated histone H3.3 deposition on HSV-1 DNA restricts genome decompaction and the progression of immediate-early transcription

Ashley Roberts et al.Aug 15, 2024
Abstract Herpesviruses are ubiquitous pathogens that cause a wide range of disease. Upon nuclear entry, their genomes associate with histones and chromatin modifying enzymes that regulate the progression of viral transcription and outcome of infection. While the composition and modification of viral chromatin has been extensively studied on bulk populations of infected cells by chromatin immunoprecipitation, this key regulatory process remains poorly defined at single-genome resolution. Here we use high-resolution quantitative imaging to investigate the spatial proximity of canonical and variant histones at individual Herpes Simplex Virus 1 (HSV-1) genomes within the first 90 minutes of infection. We identify significant population heterogeneity in the stable enrichment and spatial proximity of canonical histones (H2A, H2B, H3.1) at viral DNA (vDNA) relative to established promyelocytic leukaemia nuclear body (PML-NB) host factors that are actively recruited to viral genomes upon nuclear entry. We show the replication-independent histone H3.3/H4 chaperone Daxx to cooperate with PML to mediate the enrichment and spatial localization of variant histone H3.3 at vDNA that limits the rate of HSV-1 genome decompaction to restrict the progress of immediate-early (IE) transcription. This host response is counteracted by the viral ubiquitin ligase ICP0, which degrades PML to disperse Daxx and variant histone H3.3 from vDNA to stimulate the progression of viral genome expansion, IE transcription, and onset of HSV-1 replication. Our data support a model of intermediate and sequential histone assembly initiated by Daxx that limits the rate of HSV-1 genome decompaction independently of the stable enrichment of histones H2A and H2B at vDNA required to facilitate canonical nucleosome assembly. We identify HSV-1 genome decompaction upon nuclear infection to play a key role in the initiation and functional outcome of HSV-1 lytic infection, findings pertinent to the transcriptional regulation of many nuclear replicating herpesvirus pathogens.
Load More