PT
Peng Tao
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
195
h-index:
31
/
i10-index:
93
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction

Niraj Verma et al.Dec 23, 2019
Abstract Computational prediction of Protein-Ligand Interaction (PLI) is an important step in the modern drug discovery pipeline as it mitigates the cost, time, and resources required to screen novel therapeutics. Deep Neural Networks (DNN) have recently shown excellent performance in PLI prediction. However, the performance is highly dependent on protein and ligand features utilized for the DNN model. Moreover, in current models, the deciphering of how protein features determine the underlying principles that govern PLI is not trivial. In this work, we developed a DNN framework named SSnet that utilizes secondary structure information of proteins extracted as the curvature and torsion of the protein backbone to predict PLI. We demonstrate the performance of SSnet by comparing against a variety of currently popular machine and non-machine learning models using various metrics. We visualize the intermediate layers of SSnet to show a potential latent space for proteins, in particular to extract structural elements in a protein that the model finds influential for ligand binding, which is one of the key features of SSnet. We observed in our study that SSnet learns information about locations in a protein where a ligand can bind including binding sites, allosteric sites and cryptic sites, regardless of the conformation used. We further observed that SSnet is not biased to any specific molecular interaction and extracts the protein fold information critical for PLI prediction. Our work forms an important gateway to the general exploration of secondary structure based deep learning, which is not just confined to protein-ligand interactions, and as such will have a large impact on protein research while being readily accessible for de novo drug designers as a standalone package.
0

Predicting Functional Conformational Ensembles and Binding Mechanisms of Convergent Evolution for SARS-CoV-2 Spike Omicron Variants Using AlphaFold2 Sequence Scanning Adaptations and Molecular Dynamics Simulations

Nishank Raisinghani et al.Apr 3, 2024
Abstract In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles and binding mechanisms of convergent evolution for the SARS-CoV-2 Spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron Spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamic simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron Spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and molecular dynamics simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and molecular dynamics simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
0
Citation3
0
Save
0

Interpretable Atomistic Prediction and Functional Analysis of Conformational Ensembles and Allosteric States in Protein Kinases Using AlphaFold2 Adaptation with Randomized Sequence Scanning and Local Frustration Profiling

Nishank Raisinghani et al.Feb 20, 2024
The groundbreaking achievements of AlphaFold2 (AF2) approaches in protein structure modeling marked a transformative era in structural biology. Despite the success of AF2 tools in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and fold-switching systems. The recent NMR-based structural determination of the unbound ABL kinase in the active state and two inactive low-populated functional conformations that are unique for ABL kinase presents an ideal challenge for AF2 approaches. In the current study we employ several implementations of AF2 methods to predict protein conformational ensembles and allosteric states of the ABL kinase including (a) multiple sequence alignments (MSA) subsampling approach; (b) SPEACH_AF approach in which alanine scanning is performed on generated MSAs; and (c) introduced in this study randomized full sequence mutational scanning for manipulation of sequence variations combined with the MSA subsampling. We show that the proposed AF2 adaptation combined with local frustration mapping of conformational states enable accurate prediction of the ABL active and intermediate structures and conformational ensembles, also offering a robust approach for interpretable characterization of the AF2 predictions and limitations in detecting hidden allosteric states. We found that the large high frustration residue clusters are uniquely characteristic of the low-populated, fully inactive ABL form and can define energetically frustrated cracking sites of conformational transitions, presenting difficult targets for AF2 methods. This study uncovered previously unappreciated, fundamental connections between distinct patterns of local frustration in functional kinase states and AF2 successes/limitations in detecting low-populated frustrated conformations, providing a better understanding of benefits and limitations of current AF2-based adaptations in modeling of conformational ensembles.
0
Citation2
0
Save
0

Cotranslational protein folding can promote the formation of correct folding intermediate

Peng Tao et al.May 10, 2020
Abstract Cotranslational folding is vital for proteins to form correct structures in vivo. However, it is still unclear how a nascent chain folds at atomic resolution during the translation process. Previously, we have built a model of ribosomal exit tunnel and investigated cotranslational folding of a three-helices protein by using all-atom molecular dynamics simulations. Here we shall study the cotranslational folding of three mainly-β proteins using the same method and find that cotranslational folding can enhance helical population in most cases and reduce nonnative long-range contacts before emerging from the ribosomal exit tunnel. After exiting the tunnel, all proteins fall into local minimal states and structural ensembles in cotranslational folding are more helical than in free folding. Importantly, for GTT WW domain, one local minimal state in cotranslational folding is known as correct folding intermediate, which is not found in free folding. This result suggests that cotranslational folding may directly increase folding efficiency by accelerating sampling more than by avoiding the misfolded state, which is a mainstream viewpoint in present. In addition, our method can serve as a general scheme to study cotranslational folding process of proteins. Statement of Significance In cell, the formations of correct three-dimensional structures of proteins, namely protein folding, are essential to human health. Misfolding can lead to serious diseases such as Alzheimer’s disease and mad cow disease. As the first step of in vivo folding, the effect of cotranslational folding on the correct folding of proteins has been the focus of scientific research in this century. Although some experiments have shown that cotranslational folding can improve the efficiency of folding, its microscopic mechanism is not yet clear. In this paper, we study the process of cotranslational folding of three proteins by using all-atom molecular dynamics simulations, and try to reveal some aspects of the mechanism of cotranslational folding from a microscopic perspective.
0
Citation1
0
Save
0

Integration of a Randomized Sequence Scanning Approach in AlphaFold2 and Local Frustration Profiling of Conformational States Enable Interpretable Atomistic Characterization of Conformational Ensembles and Detection of Hidden Allosteric States in the ABL1 Protein Kinase

Nishank Raisinghani et al.Jun 12, 2024
Despite the success of AlphaFold methods in predicting single protein structures, these methods showed intrinsic limitations in the characterization of multiple functional conformations of allosteric proteins. The recent NMR-based structural determination of the unbound ABL kinase in the active state and discovery of the inactive low-populated functional conformations that are unique for ABL kinase present an ideal challenge for the AlphaFold2 approaches. In the current study, we employ several adaptations of the AlphaFold2 methodology to predict protein conformational ensembles and allosteric states of the ABL kinase including randomized alanine sequence scanning combined with the multiple sequence alignment subsampling proposed in this study. We show that the proposed new AlphaFold2 adaptation combined with local frustration profiling of conformational states enables accurate prediction of the protein kinase structures and conformational ensembles, also offering a robust approach for interpretable characterization of the AlphaFold2 predictions and detection of hidden allosteric states. We found that the large high frustration residue clusters are uniquely characteristic of the low-populated, fully inactive ABL form and can define energetically frustrated cracking sites of conformational transitions, presenting difficult targets for AlphaFold2. The results of this study uncovered previously unappreciated fundamental connections between local frustration profiles of the functional allosteric states and the ability of AlphaFold2 methods to predict protein structural ensembles of the active and inactive states. This study showed that integration of the randomized sequence scanning adaptation of AlphaFold2 with a robust landscape-based analysis allows for interpretable atomistic predictions and characterization of protein conformational ensembles, providing a physical basis for the successes and limitations of current AlphaFold2 methods in detecting functional allosteric states that play a significant role in protein kinase regulation.
0
Citation1
0
Save
31

Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variants Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms

Sian Xiao et al.May 22, 2023
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and the increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, extensive microsecond MD simulations and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant which is contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of conformational states. The results suggested that variant-specific changes of conformational mobility in the functional interfacial loops of the spike receptor binding domain can be fine-tuned through cross-talk between convergent mutations thereby providing an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulating conformational plasticity at the binding interface and regulating allosteric responses. This study also characterized the dynamics-induced evolution of allosteric pockets in the Omicron complexes that revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions. Through integrative computational approaches, this investigation provides a systematic analysis and comparison of the effects of Omicron subvariants on conformational dynamics and allosteric signaling in the complexes with the ACE2 receptor.
31
0
Save
0

Utilizing a Novel Halotolerant Bordetella Bacterium Combined with Co-Metabolites to Boost the Degradation of P-Nitrophenol in High-Salinity Wastewater

Lei Qin et al.Nov 22, 2024
A novel strain capable of fully utilizing p-nitrophenol (PNP) as the sole carbon source under high-salinity conditions was isolated from the sediments of wastewater discharged from an aquaculture company. The identification of the strain as Bordetella sp. was confirmed by analyzing its morphological, physiological, and biochemical traits in conjunction with its 16S rDNA sequence. Furthermore, pantothenic acid, serving as a carbon source for co-metabolites, could significantly enhance the biodegradation process of the tricarboxylic acid (TCA) cycle. Under the optimal growth conditions at a temperature of 30 °C, pH of 8.0, aeration of 0.32 m3·(m3·min)−1 and salinity of 3% (NaCl, w/v), the degradation rate of 350 mg·L−1 PNP increased from 60.8% to 85.9% within 72 h after adding 30 mg·L−1 of pantothenic acid to a 12-liter bioreactor. The intermediate products from the degradation process, analyzed via GC/MS, were determined to be hydroquinone, which suggests that the degradation pathway of the bacterium for PNP involves the breakdown of hydroquinone. Benefits have been derived from the microorganism’s tolerance to high salinity and high PNP concentrations, coupled with its superior PNP degradation performance, offering new insights and a research basis for the efficient biological treatment of high-salinity PNP wastewater.
0

Accurate Characterization of Conformational Ensembles and Binding Mechanisms of the SARS-CoV-2 Omicron BA.2 and BA.2.86 Spike Protein with the Host Receptor and Distinct Classes of Antibodies Using AlphaFold2-Augmented Integrative Computational Modeling

Nishank Raisinghani et al.Nov 21, 2023
Abstract The latest wave SARS-CoV-2 Omicron variants displayed a growth advantage and the increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with all-atom MD simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that AlphaFold2-predicted conformational ensemble of the BA.2.86 spike protein complex can accurately capture the main dynamics signatures obtained from microscond molecular dynamics simulations. The ensemble-based dynamic mutational scanning of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 dissected the role of the BA.2 and BA.2.86 backgrounds in modulating binding free energy changes revealing a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 mutational sites R403K, F486P and R493Q. To examine immune evasion properties of BA.2.86 in atomistic detail, we performed large scale structure-based mutational profiling of the S protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against BA.2.86 variant. The results quantified specific function of the BA.2.86 mutations to ensure broad resistance against different classes of RBD antibodies. This study revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have primarily evolved to improve immune escape while modulating binding affinity with ACE2 through cooperative effect of R403K, F486P and R493Q mutations. The study supports a hypothesis that the impact of the increased ACE2 binding affinity on viral fitness is more universal and is mediated through cross-talk between convergent mutational hotspots, while the effect of immune evasion could be more variant-dependent.
Load More