ZL
Zhiguo Li
Author with expertise in Chromium Bioremediation and Health Impacts
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
0
h-index:
54
/
i10-index:
273
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dysregulation of mitochondrial function by PLK1-mediated PDHA1 phosphorylation promotes Cr(VI)-associated lung cancer progression

Qiongsi Zhang et al.Feb 20, 2024
Summary Hexavalent chromium (Cr(VI)) is a class I environmental carcinogen known to induce lung epithelial cell transformation and promote lung cancer progression through alterations in the cell cycle and cellular energy metabolism. In this study, we investigated the role of polo-like kinase 1 (PLK1) in Cr(VI)-transformed (CrT) bronchial epithelial cells (BEAS-2B) and found that PLK1 expression was significantly upregulated in CrT cells, leading to impaired mitochondrial function and enhanced cell proliferation both in vitro and in vivo. High levels of PLK1 in CrT cells resulted in decreased mitochondrial activity due to defective modulation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), which is crucial for pyruvate/Acetyl-CoA conversion and carbon influx into the tricarboxylic acid (TCA) cycle. Mechanistically, we demonstrated that PLK1 directly phosphorylates PDHA1 at T57, leading to E1 collapse and PDHA1 degradation via activation of mitophagy. These defects resulted in the inhibition of oxidative phosphorylation and reduction of mitochondrial superoxide generation, ultimately leading to suppression of mitochondrial-mediated apoptotic response. Our findings highlight the role of PLK1 in metabolic reprogramming during Cr(VI)-associated cancer progression, providing new insights and a potential therapeutic target to inhibit Cr(VI)-induced cancer development. Moreover, PLK1 inhibitors may also have the potential to increase chemo-sensitivity of cancer cells by restoring normal mitochondrial function, thereby mitigating drug resistance caused by mitochondrial dysfunction and hyperpolarization.
17

Loss of PTPMT1 limits mitochondrial utilization of carbohydrates and leads to muscle atrophy and heart failure in tissue-specific knockout mice

Hong Zheng et al.Jan 9, 2023
ABSTRACT While mitochondria in different tissues have distinct preferences for energy sources, they are flexible in utilizing competing substrates for metabolism according to physiological and nutritional circumstances. However, the regulatory mechanisms and significance of metabolic flexibility are not completely understood. Here we report that the deletion of PTPMT1, a mitochondria-based phosphatase, critically alters mitochondrial fuel selection – the utilization of pyruvate, a key mitochondrial substrate derived from glucose (the major simple carbohydrate), is inhibited, whereas the fatty acid utilization is enhanced. PTPMT1 knockout does not impact the development of the skeletal muscle or heart. However, the metabolic inflexibility ultimately leads to muscular atrophy, heart failure, and sudden death. Mechanistic analyses reveal that the prolonged substrate shift from carbohydrates to lipids causes oxidative stress and mitochondrial destruction, which in turn results in marked accumulation of lipids and profound damage in the knockout muscle cells and cardiomyocytes. Interestingly, PTPMT1 deletion from the liver or adipose tissue does not generate any local or systemic defects. These findings suggest that PTPMT1 plays an important role in maintaining mitochondrial flexibility and that their balanced utilization of carbohydrates and lipids is essential for both the skeletal muscle and the heart despite the two tissues having different preferred energy sources.
1

Phosphorylation of AHR by PLK1 promotes metastasis of LUAD via DIO2-TH signaling

Chaohao Li et al.Aug 2, 2023
Metastasis of Lung adenocarcinoma (LUAD) is a major cause of death in patients. Aryl hydrocarbon receptor (AHR) is an important transcription factor involved in the initiation and progression of lung cancer. Polo-like kinase 1 (PLK1), a serine/threonine kinase, is an oncogene that promotes the malignancy of multiple cancer types. Nonetheless, the interaction between these two factors and significance in lung cancer remains to be determined. Here, we demonstrate that PLK1 phosphorylates AHR at S489 in LUAD, which leads to epithelial-mesenchymal transition (EMT) and metastatic events. RNA-seq analyses show that type 2 deiodinase (DIO2) is responsible for EMT and enhanced metastatic potential. DIO2 converts tetraiodothyronine (T4) to triiodothyronine (T3), which then activates thyroid hormone signaling. In vitro and in vivo experiments demonstrate that treatment with T3 or T4 promotes the metastasis of LUAD, whereas depletion of DIO2 or deiodinase inhibitor disrupts this property. Taken together, our results identify the phosphorylation of AHR by PLK1 as a mechanism leading to the progression of LUAD and provide possible therapeutic interventions for this event.
1

Single-cell analysis characterizes PLK1 as a catalyst of an immunosuppressive tumor microenvironment in LUAD

Yifan Kong et al.Aug 5, 2023
Abstract PLK1 (Polo-like kinase 1) plays a critical role in the progression of lung adenocarcinoma (LUAD). Recent studies have unveiled that targeting PLK1 improves the efficacy of immunotherapy, highlighting its important role in the regulation of tumor immunity. Nevertheless, our understanding of the intricate interplay between PLK1 and the tumor microenvironment (TME) remains incomplete. Here, using genetically engineered mouse model and single-cell RNA-seq analysis, we report that PLK1 promotes an immunosuppressive TME in LUAD, characterized with enhanced M2 polarization of tumor associated macrophages (TAM) and dampened antigen presentation process. Mechanistically, elevated PLK1 coincides with increased secretion of CXCL2 cytokine, which promotes M2 polarization of TAM and diminishes expression of class II major histocompatibility complex (MHC-II) in professional antigen-presenting cells. Furthermore, PLK1 negatively regulates MHC-II expression in cancer cells, which has been shown to be associated with compromised tumor immunity and unfavorable patient outcomes. Taken together, our results reveal PLK1 as a novel modulator of TME in LUAD and provide possible therapeutic interventions.