ABSTRACT Cardiometabolic syndromes including diabetes and obesity are associated with occurrence of heart failure with diastolic dysfunction. There are no specific treatments for diastolic dysfunction and therapies to manage symptoms have limited efficacy. Understanding of the cardiomyocyte origins of diastolic dysfunction is an important priority to identify new therapeutics. The investigative goal was to experimentally define in vitro stiffness (stress/strain) properties of isolated cardiomyocytes derived from rodent hearts exhibiting diastolic dysfunction in vivo in response to dietary induction of cardiometabolic disease. Mice fed a High Fat/Sugar Diet (HFSD vs control) for at least 25 weeks exhibited glucose intolerance, obesity and diastolic dysfunction (echo E/e’). Intact paced cardiomyocytes were functionally investigated in three conditions: non-loaded, loaded and stretched. Mean stiffness of HFSD cardiomyocytes was 70% higher than control. The E/e’ doppler ratio for the origin hearts was elevated by 35%. A significant relationship was identified between in vitro cardiomyocyte stiffness and in vivo dysfunction severity. With conversion from non-loaded to loaded condition, the decrement in maximal sarcomere lengthening rate was more accentuated in HFSD cardiomyocytes (vs control). With stretch, the Ca 2+ transient decay time course was prolonged. With transition from 2-4Hz pacing, HFSD cardiomyocyte stiffness was further increased, yet diastolic Ca 2+ rise was 50% less than control. Collectively, these findings demonstrate that a component of cardiac diastolic dysfunction in cardiometabolic disease is derived from intrinsic cardiomyocyte mechanical abnormality. Differential responses to load, stretch and pacing suggest that a previously undescribed alteration in myofilament-Ca 2+ interaction contributes to cardiomyocyte stiffness in cardiometabolic disease. KEY POINTS Understanding cardiomyocyte stiffness components is an important priority for identifying new therapeutics for diastolic dysfunction, a key feature of cardiometabolic disease. In this study cardiac function was measured in vivo (echocardiography) for mice fed a high-fat/sugar diet (HFSD, ≥25weeks) and performance of intact isolated cardiomyocytes derived from the same hearts was measured during pacing under non-loaded, loaded and stretched conditions in vitro . Using a calibrated cardiomyocyte stretch protocol, stiffness (stress/strain) was elevated in HFSD cardiomyocytes in vitro and correlated with diastolic dysfunction (E/e’) in vivo . The HFSD cardiomyocyte Ca 2+ transient decay was prolonged in response to stretch, and stiffness was accentuated in response to pacing increase while the rise in diastolic Ca 2+ was attenuated. These findings suggest that stretch-dependent augmentation of the myofilament-Ca 2+ response during diastole partially underlies elevated cardiomyocyte stiffness and diastolic dysfunction of hearts of animals with cardiometabolic disease.