Abstract COVID-19, caused by SARS-CoV-2, is associated with arterial and venous thrombosis, thereby increasing mortality. SARS-CoV-2 spike protein (SP), a viral envelope structural protein, is implicated in COVID-19-associated thrombosis. However, the underlying mechanisms remain unknown. Thymidine phosphorylase (TYMP), a newly identified prothrombotic protein, is upregulated in the plasma, platelets, and lungs of patients with COVID-19 but its role in COVID-19-associated thrombosis is not defined. In this study, we found that wild-type SARS-CoV-2 SP significantly promoted arterial thrombosis in K18-hACE2 TG mice. SP-accelerated thrombosis was attenuated by inhibition or genetic ablation of TYMP. SP increased the expression of TYMP, resulting in the activation of signal transducer and activator of transcription 3 (STAT3) in BEAS-2B cells, a human bronchial epithelial cell line. A siRNA-mediated knockdown of TYMP inhibited SP-enhanced activation of STAT3. Platelets derived from SP-treated K18-hACE2 TG mice also showed increased STAT3 activation, which was reduced by TYMP deficiency. Activated STAT3 is known to potentiate glycoprotein VI signaling in platelets. While SP did not influence ADP- or collagen-induced platelet aggregation, it significantly shortened activated partial thromboplastin time and this change was reversed by TYMP knockout. Additionally, platelet factor 4 (PF4) interacts with SP, which also complexes with TYMP. TYMP enhanced the formation of the SP/PF4 complex, which may potentially augment the prothrombotic and procoagulant effects of PF4. We conclude that SP upregulates TYMP expression, and TYMP inhibition or knockout mitigates SP-enhanced thrombosis. These findings indicate that inhibition of TYMP may be a novel therapeutic strategy for COVID-19-associated thrombosis. Key Points SARS-CoV-2 spike protein, thymidine phosphorylase, and platelet factor 4 form a complex that may promote clot formation. Inhibiting thymidine phosphorylase attenuates SARS-CoV-2 spike protein-enhanced thrombosis, platelet activation, and coagulation.