Abstract Japanese encephalitis virus (JEV) is a zoonotic mosquito-transmitted Flavivirus circulating in birds and pigs. In humans, JEV can cause severe viral encephalitis with high mortality. Considering that vector-free direct virus transmission was observed in pigs, JEV introduction into an immunologically naïve pig population could result in a series of direct transmissions disrupting the alternating host cycling between vertebrates and mosquitoes. To assess the potential consequences of such a realistic scenario, we passaged JEV ten times in pigs. This resulted in higher in vivo viral replication, increased shedding, and stronger innate immune responses in pigs. Nevertheless, the viral tissue tropism remained similar and frequency of direct transmission was not enhanced. Next generation sequencing showed single nucleotide deviations in 10% of the genome during passaging. In total, 25 point mutations were selected to reach a frequency of at least 35% in one of the passages. From these, six mutations resulted in amino acid changes located in the precursor of membrane, the envelope, the non-structural 3 and the non-structural 5 proteins. In a competition experiment with two lines of passaging, the mutation M374L in the envelope protein and N275D in the non-structural protein 5 showed a fitness advantage in pigs. Altogether, the interruption of the alternating host cycle of JEV caused a prominent selection of viral quasispecies as well as selection of de novo mutations associated with fitness gains in pigs, albeit without enhancing direct transmission frequency. Author summary Japanese encephalitis virus (JEV) represents a major health threat in parts of Asia and Oceania. Primary vertebrate hosts are birds and pigs, but human infection also occurs and can cause severe encephalitis with high mortality. Like other Flaviviruses transmitted by insect bites, JEV requires replication in alternating cycles between mosquitoes on one side and birds or pigs on the other side. However, we previously reported that direct transmissions between pigs in absence of mosquitos can occur. Considering the increased risks for such events after the spread of JEV to a new region with immunologically naïve pigs, the present study was performed to understand if and how a series of direct transmissions would promote JEV adaptations to pigs and change virus-host interactions. Pigs infected with JEV passaged ten times showed enhanced clinical symptoms and stronger antiviral immune response, but luckily no increase in direct transmission was observed. Nevertheless, genomic analysis demonstrated a complete change in dominant virus variants, as well as selection of six viral amino acid changes. This indicates that interruptions of the alternating lifestyle of JEV causes a strong evolutionary pressure, which through fitness adaptations can change the viral characteristics.