TL
Tongchao Li
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
258
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
31

Cellular Bases of Olfactory Circuit Assembly Revealed by Systematic Time-lapse Imaging

Tongchao Li et al.May 5, 2021
ABSTRACT Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 28 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations, and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics- corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibit “exploring branches” consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral interactions in contralateral target selection, and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.
31
Citation1
0
Save
6

Origin of wiring specificity in an olfactory map: dendrite targeting of projection neurons

Kenneth Wong et al.Dec 29, 2022
ABSTRACT How does wiring specificity of neural maps emerge during development? Formation of the adult Drosophila olfactory glomerular map begins with patterning of projection neuron (PN) dendrites at the early pupal stage. To better understand the origin of wiring specificity of this map, we created genetic tools to systematically characterize dendrite patterning across development at PN type–specific resolution. We find that PNs use lineage and birth order combinatorially to build the initial dendritic map. Specifically, birth order directs dendrite targeting in rotating and binary manners for PNs of the anterodorsal and lateral lineages, respectively. Two-photon– and adaptive optical lattice light-sheet microscope–based time-lapse imaging reveals that PN dendrites initiate active targeting with direction-dependent branch stabilization on the timescale of seconds. Moreover, PNs that are used in both the larval and adult olfactory circuits prune their larval-specific dendrites and re-extend new dendrites simultaneously to facilitate timely olfactory map organization. Our work highlights the power and necessity of type-specific neuronal access and time-lapse imaging in identifying wiring mechanisms that underlie complex patterns of functional neural maps.
0

Molecular and Cellular Mechanisms of Teneurin Signaling in Synaptic Partner Matching

Chuanyun Xu et al.Feb 23, 2024
SUMMARY In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionally conserved teneurins were the first identified transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurin’s functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching. HIGHLIGHTS In situ spatial proteomics reveal the first intracellular interactome of teneurins Ten-m signals via a RhoGAP and Rac1 GTPase to regulate synaptic partner matching Single-axon analyses reveal a stabilization-upon-contact model for partner matching Ten-m signaling promotes F-actin in axon branches contacting partner dendrites
Load More