NN
Nadia Naffakh
Author with expertise in Innate Immunity to Viral Infection
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(92% Open Access)
Cited by:
448
h-index:
36
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
12

A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors

Chen Ky et al.Dec 21, 2021
Abstract Effective drugs against SARS-CoV-2 are urgently needed to treat severe cases of infection and for prophylactic use. The main viral protease (nsp5 or 3CLpro) represents an attractive and possibly broad-spectrum target for drug development as it is essential to the virus life cycle and highly conserved among betacoronaviruses. Sensitive and efficient high-throughput screening methods are key for drug discovery. Here we report the development of a gain-of-signal, highly sensitive cell-based luciferase assay to monitor SARS-CoV-2 nsp5 activity and show that it is suitable for high-throughput screening of compounds in a 384-well format. A benefit of miniaturisation and automation is that screening can be performed in parallel on a wild-type and a catalytically inactive nsp5, which improves the selectivity of the assay. We performed molecular docking-based screening on a set of 14,468 compounds from an in-house chemical database, selected 359 candidate nsp5 inhibitors and tested them experimentally. We identified four molecules, including the broad-spectrum antiviral merimepodib/VX-497, which show anti-nsp5 activity and inhibit SARS-CoV-2 replication in A549-ACE2 cells with IC 50 values in the 4-21 µM range. The here described assay will allow the screening of large-scale compound libraries for SARS-CoV-2 nsp5 inhibitors. Moreover, we provide evidence that this assay can be adapted to other coronaviruses and viruses which rely on a viral protease.
12
Citation3
0
Save
1

Multivalent dynamic colocalization of avian influenza polymerase and nucleoprotein by intrinsically disordered ANP32A reveals the molecular basis of human adaptation

Aldo Camacho‐Zarco et al.Jul 8, 2023
ABSTRACT Adaptation of avian influenza RNA polymerase (FluPol) to human cells requires mutations on the 627-NLS domains of the PB2 subunit. The E627K adaptive mutation compensates a 33-amino-acid deletion in the acidic intrinsically disordered domain of the host transcription regulator ANP32A, a deletion that restricts FluPol activity in mammalian cells. The function of ANP32A in the replication transcription complex and in particular its role in host restriction remain poorly understood. Here we characterise ternary complexes formed between ANP32A, FluPol and the viral nucleoprotein, NP, supporting the putative role of ANP32A in shuttling NP to the replicase complex. We demonstrate that while FluPol and NP can simultaneously bind distinct linear motifs on avian ANP32A, the deletion in the shorter human ANP32A blocks this mode of colocalization. NMR reveals that NP and human-adapted Pol, containing the E627K mutation, simultaneously bind the identical extended linear motif on human ANP32A, in an electrostatically driven, highly dynamic and multivalent ternary complex. This study reveals a probable molecular mechanism underlying host adaptation, whereby E627K, which enhances the basic surface of the 627 domain, is selected to confer the necessary multivalent properties to allow ANP32A to colocalize NP and FluPol in human cells.
1
Citation2
0
Save
0

Structures of influenza A and B replication complexes give insight into avian to human host adaptation and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase

Benoît Arragain et al.Aug 19, 2024
Replication of influenza viral RNA depends on at least two viral polymerases, a parental replicase and an encapsidase, and cellular factor ANP32. ANP32 comprises an LRR domain and a long C-terminal low complexity acidic region (LCAR). Here we present evidence suggesting that ANP32 is recruited to the replication complex as an electrostatic chaperone that stabilises the encapsidase moiety within apo-polymerase symmetric dimers that are distinct for influenza A and B polymerases. The ANP32 bound encapsidase, then forms the asymmetric replication complex with the replicase, which is embedded in a parental ribonucleoprotein particle (RNP). Cryo-EM structures reveal the architecture of the influenza A and B replication complexes and the likely trajectory of the nascent RNA product into the encapsidase. The cryo-EM map of the FluB replication complex shows extra density attributable to the ANP32 LCAR wrapping around and stabilising the apo-encapsidase conformation. These structures give new insight into the various mutations that adapt avian strain polymerases to use the distinct ANP32 in mammalian cells.
0
Citation1
0
Save
1

Heterogeneity of monocyte subsets and susceptibility to influenza virus contribute to inter-population variability of protective immunity

Mary O’Neill et al.Dec 7, 2020
Abstract There is considerable inter-individual and inter-population variability in response to viruses. The potential of monocytes to elicit type-I interferon responses has attracted attention to their role in viral infections. Here, we use an ex vivo model to characterize the role of cellular heterogeneity in human variation of monocyte responses to influenza A virus (IAV) exposure. Using single-cell RNA-sequencing, we show widespread inter-individual variability in the percentage of IAV-infected monocytes. We show that cells escaping viral infection display increased mRNA expression of type-I interferon stimulated genes and decreased expression of ribosomal genes, relative to both infected cells and those never exposed to IAV. While this host defense strategy is shared between CD16 + / CD16 - monocytes, we also uncover CD16 + -specific mRNA expression of IL6 and TNF in response to IAV, and a stronger resistance of CD16 + monocytes to IAV infection. Notably, individuals with high cellular susceptibility to IAV are characterized by a lower activation at basal state of an IRF/STAT-induced transcriptional network, which includes antiviral genes such as IFITM3, MX1 , and OAS3 . Finally, using flow cytometry and bulk RNA-sequencing across 200 individuals of African and European ancestry, we observe a higher number of CD16 + monocytes and lower susceptibility to IAV infection among monocytes from individuals of African-descent. Collectively, our results reveal the effects of IAV infection on the transcriptional landscape of human monocytes and highlight previously unappreciated differences in cellular susceptibility to IAV infection between individuals of African and European ancestry, which may account for the greater susceptibility of Africans to severe influenza. Significance Statement Monocytes may play a critical role during severe viral infections. Our study tackles how heterogeneity in monocyte subsets and activation contributes to shape individual differences in the transcriptional response to viral infections. Using single-cell RNA-sequencing, we reveal heterogeneity in monocyte susceptibility to IAV infection, both between CD16 + / CD16 - monocytes and across individuals, driven by differences in basal activation of an IRF/STAT-induced antiviral program. Furthermore, we show a decreased ability of IAV to infect and replicate in monocytes from African-ancestry individuals, with possible implications for antigen presentation and lymphocyte activation. These results highlight the importance of early cellular activation in determining an individuals’ innate immune response to viral infection.
1
Citation1
0
Save
1

The RBPome of influenza A virus mRNA reveals a role for TDP-43 in viral replication

Maud Dupont et al.Mar 21, 2023
ABSTRACT Recent technical advances have significantly improved our understanding of the RNA-binding protein (RBP) repertoire present within eukaryotic cells, with a particular focus on the RBPs that interact with cellular polyadenylated mRNAs. However, recent studies utilising the same technologies have begun to tease apart the RBP interactome of viral mRNAs, notably SARS-CoV-2, revealing both similarities and differences between the RBP profiles of viral and cellular mRNAs. Herein, we comprehensively identified the RBPs that associate with the NP mRNA of an influenza A virus. Moreover, we provide evidence that the viral polymerase is essential for the recruitment of RPBs to viral mRNAs through direct polymerase-RBP interactions during transcription. We show that loss of TDP-43, which associates with the viral mRNAs, results in lower levels of viral mRNAs within infected cells, and a decreased yield of infectious viral particles. Overall, our results uncover an important role for TDP-43 in the influenza A virus replication cycle via a direct interaction with viral mRNAs, and point to a role of the viral polymerase in orchestrating the assembly of viral mRNPs.
1
Citation1
0
Save
18

Type B and Type A influenza polymerases have evolved distinct binding interfaces to recruit the RNA polymerase II CTD

Tim Krischuns et al.Feb 4, 2022
Abstract During annual influenza epidemics, influenza B viruses (IBVs) co-circulate with influenza A viruses (IAVs), can become predominant and cause severe morbidity and mortality. Phylogenetic analyses suggest that IAVs (primarily avian viruses) and IBVs (primarily human viruses) have diverged over long time scales. Identifying their common and distinctive features is an effective approach to increase knowledge about the molecular details of influenza infection. The virus-encoded RNA-dependent RNA polymerases (FluPol B and FluPol A ) are PB1-PB2-PA heterotrimers that perform transcription and replication of the viral genome in the nucleus of infected cells. Initiation of viral mRNA synthesis requires a direct association of FluPol with the host RNA polymerase II (RNAP II), in particular the repetitive C-terminal domain (CTD) of the major RNAP II subunit, to enable “cap-snatching” whereby 5’-capped oligomers derived from nascent RNAP II transcripts are pirated to prime viral transcription. Here, we present the first high-resolution co-crystal structure of FluPol B bound to a CTD mimicking peptide at a binding site crossing from PA to PB2. By performing structure-based mutagenesis of FluPol B and FluPol A followed by a systematic investigation of FluPol-CTD binding, FluPol activity and viral phenotype, we demonstrate that IBVs and IAVs have evolved distinct binding interfaces to recruit the RNAP II CTD, despite the CTD sequence being highly conserved across host species. We find that the PB2 627 subdomain, a major determinant of FluPol-host cell interactions and IAV host-range, is involved in CTD-binding for IBVs but not for IAVs, and we show that FluPol B and FluPol A bind to the host RNAP II independently of the CTD. Altogether, our results strongly suggest that the CTD-binding modes of IAV and IBV represent avian- and human-optimized binding modes, respectively, and that their divergent evolution was shaped by the broader interaction network between the FluPol and the host transcriptional machinery. Authors summary During seasonal influenza epidemics, influenza B viruses (IBVs) co-circulate with influenza A viruses (IAVs) and can cause severe outcomes. The influenza polymerase is a key drug target and it is therefore important to understand the common and distinctive molecular features of IBV and IAV polymerases. To achieve efficient transcription and replication in the nucleus of infected cells, influenza polymerases closely cooperate with the cellular RNA polymerase II (RNAP II) and interact with the repetitive C-terminal domain (CTD) of its major subunit. Here we gained new insights into the way IBV and IAV polymerases interact with the CTD of RNAP II. High-resolution structural data was used to perform structure-based mutagenesis of IBV and IAV polymerases followed by a systematic investigation of their interaction with RNAP II, transcription/replication activity and viral phenotype. Strikingly, we found that IBVs and IAVs have evolved distinct interfaces to interact with the host transcriptional machinery, in particular with the CTD of RNAP II. We provide evidence that these differences may have evolved as a consequence of the differences in IBV and IAV host range. Our findings are of significant importance with regard to the development of broad-spectrum antivirals that target the virus-host interface.
18
Citation1
0
Save
0

Mechanism of Co-Transcriptional Cap-Snatching by Influenza Polymerase

Alexander Rotsch et al.Aug 11, 2024
Abstract Influenza virus mRNA is stable and competent for nuclear export and translation because it receives a 5′ cap(1) structure in a process called cap-snatching 1 . During cap-snatching, the viral RNA-dependent RNA polymerase (FluPol) binds to host RNA polymerase II (Pol II) and the emerging transcript 2,3 . The FluPol endonuclease then cleaves a capped RNA fragment that sub-sequently acts as a primer for the transcription of viral genes 4,5 . Here, we present the cryo-EM structure of FluPol bound to a transcribing Pol II in complex with the elongation factor DSIF in the pre-cleavage state. The structure shows that FluPol directly interacts with both Pol II and DSIF, which position the FluPol endonuclease domain near the RNA exit channel of Pol II. These interactions are important for the endonuclease activity of FluPol and FluPol activity in cells. A second structure trapped after cap-snatching shows that cleavage rearranges the capped RNA primer within the FluPol, directing the capped RNA 3′-end towards the FluPol polymerase active site for viral transcription initiation. Altogether, our results provide the molecular mechanisms of co-transcriptional cap-snatching by FluPol.
Load More