HK
Ho Kwak
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
2,756
h-index:
23
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

m6A enhances the phase separation potential of mRNA

Ryan Ries et al.Jul 10, 2019
N6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA1,2, with around 25% of mRNAs containing at least one m6A. Methylation of mRNA to form m6A is required for diverse cellular and physiological processes3. Although the presence of m6A in an mRNA can affect its fate in different ways, it is unclear how m6A directs this process and why the effects of m6A can vary in different cellular contexts. Here we show that the cytosolic m6A-binding proteins—YTHDF1, YTHDF2 and YTHDF3—undergo liquid–liquid phase separation in vitro and in cells. This phase separation is markedly enhanced by mRNAs that contain multiple, but not single, m6A residues. Polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their low-complexity domains and thereby leading to phase separation. The resulting mRNA–YTHDF complexes then partition into different endogenous phase-separated compartments, such as P-bodies, stress granules or neuronal RNA granules. m6A-mRNA is subject to compartment-specific regulation, including a reduction in the stability and translation of mRNA. These studies reveal that the number and distribution of m6A sites in cellular mRNAs can regulate and influence the composition of the phase-separated transcriptome, and suggest that the cellular properties of m6A-modified mRNAs are governed by liquid–liquid phase separation principles. The cytosolic N6-methyladenosine (m6A)-binding proteins YTHDF1, YTHDF2 and YTHDF3 undergo liquid–liquid phase separation in vitro and in cells; this is enhanced by polymethylated mRNAs to form complexes that partition into different cellular phase-separated compartments.
0

Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq)

Dig Mahat et al.Jul 21, 2016
Mahat et al. describe how to map the genome-wide positions of active RNA polymerases using a modified nuclear run-on approach called PRO-seq. Details for PRO-cap, a modification that identifies transcription start sites, are also included. We provide a protocol for precision nuclear run-on sequencing (PRO-seq) and its variant, PRO-cap, which map the location of active RNA polymerases (PRO-seq) or transcription start sites (TSSs) (PRO-cap) genome-wide at high resolution. The density of RNA polymerases at a particular genomic locus directly reflects the level of nascent transcription at that region. Nuclei are isolated from cells and, under nuclear run-on conditions, transcriptionally engaged RNA polymerases incorporate one or, at most, a few biotin-labeled nucleotide triphosphates (biotin-NTPs) into the 3′ end of nascent RNA. The biotin-labeled nascent RNA is used to prepare sequencing libraries, which are sequenced from the 3′ end to provide high-resolution positional information for the RNA polymerases. PRO-seq provides much higher sensitivity than ChIP-seq, and it generates a much larger fraction of usable sequence reads than ChIP-seq or NET-seq (native elongating transcript sequencing). Similarly to NET-seq, PRO-seq maps the RNA polymerase at up to base-pair resolution with strand specificity, but unlike NET-seq it does not require immunoprecipitation. With the protocol provided here, PRO-seq (or PRO-cap) libraries for high-throughput sequencing can be generated in 4–5 working days. The method has been applied to human, mouse, Drosophila melanogaster and Caenorhabditis elegans cells and, with slight modifications, to yeast.
0
Citation454
0
Save
0

Heterogeneous transcriptome response to DNA damage at single cell resolution.

Sung Park et al.Aug 15, 2019
Cancer cells often heterogeneously respond to genotoxic chemotherapy, leading to fractional killing and chemoresistance, which remain as the major obstacles in cancer treatment. It is widely believed that DNA damage induces a uniform response in regulating transcription and that cell fate is passively determined by a threshold mechanism evaluating the level of transcriptional responses. On the contrary to this assumption, here we show that a surprisingly high level of heterogeneity exists in individual cell transcriptome responses to DNA damage, and that these transcriptome variations dictate the cell fate after DNA damage. Many DNA damage response genes, including tumor suppressor p53 targets, were exclusively expressed in only a subset of cells having specific cell fate, producing unique stress responses tailored for the fate that the cells are committed to. For instance, CDKN1A, the best known p53 target inhibiting cell cycle, was specifically expressed in a subset of cells undergoing cell cycle checkpoint, while other pro-apoptotic p53 targets were expressed only in cells undergoing apoptosis. A small group of cells exhibited neither checkpoint nor apoptotic responses, but produced a unique transcriptional program that conferred strong chemoresistance to the cells. The heterogeneous transcriptome response to DNA damage was also observed at the protein level in flow cytometry. Our results demonstrate that cell fate heterogeneity after DNA damage is mediated by distinct transcriptional programs generating fate-specific gene expression landscapes. This finding provides an important insight into understanding heterogeneous chemotherapy responses of cancer cells.
0

Population-scale study of eRNA transcription reveals bipartite functional enhancer architecture

Katla Kristjánsdóttir et al.Sep 27, 2018
Enhancer RNAs (eRNA) are non-coding RNAs transcribed bidirectionally from active regulatory sequences. Their expression levels correlate with the activating potentials of the enhancers, but due to their instability, eRNAs have proven difficult to quantify in large scale. To overcome this, we use capped-nascent-RNA sequencing to efficiently capture the bidirectional initiation of eRNAs. We apply this in large scale to the human lymphoblastoid cell lines from the Yoruban population, and detected nearly 75,000 eRNA transcription sites with high sensitivity and specificity. We identify genetic variants significantly associated with overall eRNA initiation levels, as well as the transcription directionality between the two divergent eRNA pairs, namely the transcription initiation and directional initiation quantitative trait loci (tiQTLs and diQTLs) respectively. High-resolution analyses of these two types of eRNA QTLs reveal distinct positions of enrichment not only at the central transcription factor (TF) binding regions but also at the flanking eRNA initiation regions, both of which are equivalently associated with mRNA expression QTLs. These two regions - the central TF binding footprint and the eRNA initiation cores - define the bipartite architecture and the function of enhancers, and may provide further insights into interpreting the significance of non-coding regulatory variants.
Load More