IH
Ingo Helbig
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
2
h-index:
39
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

The SCN1A Philadelphia variant – a gain-of-function mutation causing an early-onset epileptic encephalopathy

Jérôme Clatot et al.Jul 1, 2022
Abstract Objective Loss-of-function variants in SCN1A cause Dravet Syndrome, the most common genetic developmental and epileptic encephalopathy (DEE). However, emerging evidence suggests separate entities of SCN1A -related disorders due to gain-of-function variants. Here, we aim to refine the clinical, genetic, and functional electrophysiological features of a recurrent p.R1636Q gain-of-function variant, identified in four individuals at a single center. Methods Individuals carrying the recurrent SCN1A p.R1636Q variant were identified through diagnostic testing. Whole-cell voltage-clamp electrophysiological recording in HEK-293T cells was performed to compare the properties of sodium channels containing wild-type Nav1.1 or Nav1.1-R1636Q along with both Navβ1 and Navβ2 subunits, including response to oxcarbazepine. To delineate differences to other SCN1A -related epilepsies, we analyzed electronic medical records. Results All four individuals had an early-onset DEE characterized by focal tonic seizures and additional seizure types starting in the first few weeks of life. Electrophysiological analysis showed a mixed gain-of-function effect with normal current density, a leftward (hyperpolarized) shift of steady-state inactivation, and slower inactivation kinetics leading to a prominent late sodium current ( I Na ). The observed functional changes closely paralleled effects of pathogenic variants in SCN3A and SCN8A at corresponding positions. Both wildtype and variant exhibited sensitivity to block by oxcarbazepine, partially correcting electrophysiological abnormalities of the SCN1A p.R1636Q variant. Clinically, a single individual responded to treatment with oxcarbazepine. Across 51 individuals with SCN1A -related epilepsies, those with the recurrent p.R1636Q variants had the earliest ages of onset. Interpretation The recurrent SCN1A p.R1636Q variant causes a clinical entity with a wider clinical spectrum than previously reported, characterized by ultra early-onset epilepsy and absence of prominent movement disorder. Functional consequences of this variant lead to mixed loss- and gain-of-function that is partially corrected by oxcarbazepine. The recurrent p.R1636Q variant represents one of the most common causes of early-onset SCN1A -related epilepsies with separate treatment and prognosis implications. Key Points Loss-of-function variants in SCN1A cause Dravet syndrome, but gain-of-function variants have an emerging clinical spectrum. The SCN1A p.R1636Q variant shows similar overall gain-of-function effects to identical missense variants in other voltage-gated sodium channels. Features of four unreported individuals with SCN1A p.R1636Q from a single center expand the SCN1A gain-of-function phenotype. Individuals with this variant are recognizable by their ultra early-onset seizures in contrast to Dravet syndrome.
19
Citation1
0
Save
0

Molecular and Cellular Context Influences SCN8A Variant Function

Carlos Vanoye et al.Nov 13, 2023
Pathogenic variants in SCN8A , which encodes the voltage-gated sodium (Na V ) channel Na V 1.6, are associated with neurodevelopmental disorders including epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by the use of a neonatal-expressed alternatively spliced isoform of Na V 1.6 (Na V 1.6N), and engineered mutations to render the channel tetrodotoxin (TTX) resistant. In this study, we investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in two developmentally regulated splice isoforms (Na V 1.6N, Na V 1.6A). We employed automated patch clamp recording to enhance throughput, and developed a novel neuronal cell line (ND7/LoNav) with low levels of endogenous Na V current to obviate the need for TTX-resistance mutations. Expression of Na V 1.6N or Na V 1.6A in ND7/LoNav cells generated Na V currents that differed significantly in voltage-dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared to the corresponding wild-type (WT) channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
0

Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals

Yen‐Chen Feng et al.Jan 21, 2019
Sequencing-based studies have identified novel risk genes for rare, severe epilepsies and revealed a role of rare deleterious variation in common epilepsies. To identify the shared and distinct ultra-rare genetic risk factors for rare and common epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,364 controls of European ancestry. We focused on three phenotypic groups; the rare but severe developmental and epileptic encephalopathies (DEE), and the commoner phenotypes of genetic generalized epilepsy (GGE) and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy, with the strongest enrichment seen in DEE and the least in NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, while no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEE and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the top associations, including CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study confirms a convergence in the genetics of common and rare epilepsies associated with ultra-rare coding variation and highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology in the largest epilepsy WES study to date.
0

Heterozygous variants in KMT2E cause a spectrum of neurodevelopmental disorders and epilepsy

Anne O’Donnell-Luria et al.Mar 5, 2019
We delineate a KMT2E gene-related neurodevelopmental disorder based on 38 individuals in 36 families. This includes 31 distinct heterozygous variants in the KMT2E gene (28 ascertained from Matchmaker Exchange and 3 previously reported), and 4 individuals with chromosome 7q22.2-22.23 microdeletions encompassing the KMT2E gene (1 previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants, and was responsive to treatment with anti-epileptic medications in almost all. Over 70% of the individuals were male and expressivity was variable by sex, with epilepsy more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant negative effects specific to these missense variants in KMT2E may explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.
0

Molecular dynamics simulations reveal molecular mechanisms for the gain and loss of function effects of fourSCN2Avariants

Nisha Bhattarai et al.Feb 21, 2024
ABSTRACT SCN2A gene disorders cover a wide range of medical conditions, from epileptic encephalopathies to neurodevelopmental disorders. The variants of these disorders, studied through electrophysiology, show complex behaviors that go beyond simple classification as either gain or loss of function. In our study, we simulated the biophysical effects of variants ( R937C , V208E , S1336Y , and R853Q ) to understand their impact. Our findings reveal that all these variants negatively affect the structural stability of the gene, with R937C being the most unstable. Specifically, R937C disrupts important charged interactions affecting sodium ion flow, while S1336Y introduces a new interaction that impacts the channel’s inactivation gate. Conversely, the variants V208E and R853Q , which are located in the voltage-sensing domains, have opposite effects: R853Q increases compactness and interaction, whereas V208E shows a decrease. Our computer-based method offers a scalable way to gain crucial insights into how genetic variants influence channel dysfunction and contribute to neurodevelopmental disorders. AUTHOR SUMMARY Despite numerous advancements in computational methods for predicting variant pathogenicity in the SCN2A gene, understanding the precise biophysical molecular mechanisms associated with each variant at the atomic level remains a challenge. Presently, variants are predominantly categorized as either gain or loss of function, often overlooking critical structural details associated with these variants. This study focuses on elucidating the molecular mechanisms linked to the four most common SCN2A variants using all-atom molecular dynamics simulations, employing three replicas for each system. Our findings offer insights into the potential mechanisms underlying these four variants, thereby providing explanations for the observed electrophysiological outcomes. This investigation significantly contributes to enhancing our comprehension of how SCN2A variants manifest in various diseases. It underscores the importance of unraveling the biophysical properties underlying potential disease mechanisms, which could potentially enhance diagnostic and therapeutic strategies for patients afflicted with SCN2A -related disorders.
20

Predicting the functional effects of voltage-gated potassium channel missense variants with multi-task learning

Christian Boßelmann et al.Dec 3, 2021
Abstract Purpose Variants in genes encoding voltage-gated potassium channels are associated with a broad spectrum of neurological diseases including epilepsy, ataxia, and intellectual disability. Knowledge of the resulting functional changes, characterized as overall ion channel gain- or loss-of-function, is essential to guide clinical management including precision medicine therapies. However, for an increasing number of variants, little to no experimental data is available. New tools are needed to evaluate variant functional effects. Methods We catalogued a comprehensive dataset of 959 functional experiments across 19 voltage-gated potassium channels, leveraging data from 782 unique disease-associated and synthetic variants. We used these data to train a taxonomy-based multi-task learning support vector machine (MTL-SVM), and compared performance to a baseline of standard SVMs. Results MTL-SVM maintains channel family structure during model training, improving overall predictive performance (mean balanced accuracy 0.729 ± 0.029, AU-ROC 0.757 ± 0.039) over baseline (mean balanced accuracy 0.645 ± 0.041, AU-ROC 0.710 ± 0.074). We can obtain meaningful predictions even for channels with few known variants ( KCNC1, KCNQ5 ). Conclusion Our model enables functional variant prediction for voltage-gated potassium channels. It may assist in tailoring current and future precision therapies for the increasing number of patients with ion channel disorders.
0

Gene family information facilitates variant interpretation and identification of disease-associated genes

Dennis Lal et al.Jul 5, 2017
Differentiating risk-conferring from benign missense variants, and therefore optimal calculation of gene-variant burden, represent a major challenge in particular for rare and genetic heterogeneous disorders. While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes are paralogs and belong to gene families. It has not been thoroughly investigated how gene family information can be utilized for disease gene discovery and variant interpretation. We developed a paralog conservation score to empirically evaluate whether paralog conserved or non-conserved sites of in-human paralogs are important for protein function. Using this score, we demonstrate that disease-associated missense variants are significantly enriched at paralog conserved sites across all disease groups and disease inheritance models tested. Next, we assessed whether gene family information could assist in discovering novel disease-associated genes. We subsequently developed a gene family de novo enrichment framework that identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in more than 10k neurodevelopmental disorder patients. 33 gene family enriched genes represent novel candidate genes which are brain expressed and variant constrained in neurodevelopmental disorders.