Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
DW
Dean Walsh
Author with expertise in Bacterial Biofilms and Quorum Sensing Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
1
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The biocide triclosan induces (p)ppGpp dependent antibiotic tolerance and alters SarA dependent biofilm structures inStaphylococcus aureus

Dean Walsh et al.Feb 1, 2023
Abstract The biocide triclosan is used extensively in both household and hospital settings. The chronic exposure to the biocide occurring in individuals that use triclosan-containing products results in low levels of triclosan present in the human body that has been linked to induction of antibiotic tolerance and altered biofilm formation. Here we aimed to unravel the molecular mechanisms involved in triclosan induced antibiotic tolerance and biofilm formation in Staphylococcus aureus . Triclosan treatment prior to planktonic exposure to bactericidal antibiotics resulted in 1,000 fold higher viable cell counts compared to non-pretreated cultures. Triclosan pretreatment also protected S. aureus biofilms against otherwise lethal doses of antibiotics as shown by live/dead cell staining and viable cell counting. Triclosan mediated antibiotic tolerance in planktonic and biofilm cultures required an active stringent response because a pppGpp 0 strain was not protected from antibiotic killing. Incubation of S. aureus with triclosan also altered biofilm structure due to SarA-mediated overproduction of the polysaccharide intercellular adhesin (PIA) in the biofilm matrix. Thus, physiologically relevant concentrations of triclosan can trigger (p)ppGpp dependent antibiotic tolerance as well as SarA dependent biofilm formation. Importance The prevalent bacterium Staphylococcus aureus infects skin lesions and indwelling devices, and this can cause sepsis with 33% mortality. Intrinsic to this is the formation of co-ordinated communities (biofilms) protected by a polysaccharide coat. S. aureus is increasingly difficult to eradicate due to its antibiotic resistance. Protection against Methicillin Resistant S. aureus (MRSA) includes pre-hospital admission washing with products containing biocides. The biocide triclosan is the predominant antibacterial compound in sewage in Ontario due to its use in household and hospital settings. Levels of triclosan accumulate with exposure in humans. The significance of our research is in identifying the mechanisms triggered by exposure of S. aureus to physiological levels of triclosan that go on to raise the tolerance of S. aureus to antibiotics and promote the formation of biofilms. This understanding will inform future criteria used to determine effective antimicrobial treatments.
1
Citation1
0
Save
0

A new model of endotracheal tube biofilm identifies combinations of matrix-degrading enzymes and antimicrobials able to eradicate biofilms of pathogens that cause ventilator-associated pneumonia

Dean Walsh et al.Feb 20, 2024
Abstract Defined as a pneumonia occurring after more than 48 hours of mechanical ventilation via an endotracheal tube, ventilator-associated pneumonia results from biofilm formation on the indwelling tube, seeding the patient’s lower airways with pathogenic microbes such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans. Currently there is a lack of accurate in vitro models of ventilator-associated pneumonia development. This greatly limits our understanding of how the in-host environment alters pathogen physiology and the efficacy of ventilator-associated pneumonia prevention or treatment strategies. Here, we showcase a reproducible model that simulates biofilm formation of these pathogens in a host-mimicking environment, and demonstrate that the biofilm matrix produced differs from that observed in standard laboratory growth medium. In our model, pathogens are grown on endotracheal tube segments in the presence of a novel synthetic ventilator airway mucus (SVAM) medium that simulates the in-host environment. Matrix-degrading enzymes and cryo-SEM were employed to characterise the system in terms of biofilm matrix composition and structure, as compared to standard laboratory growth medium. As seen in patients, the biofilms of ventilator-associated pneumonia pathogens in our model either required very high concentrations of antimicrobials for eradication, or could not be eradicated. However, combining matrix-degrading enzymes with antimicrobials greatly improved biofilm eradication of all pathogens. Our in vitro endotracheal tube (IVETT) model informs on fundamental microbiology in the ventilator-associated pneumonia context, and has broad applicability as a screening platform for antibiofilm measures including the use of matrix-degrading enzymes as antimicrobial adjuvants. Importance The incidence of ventilator-associated pneumonia in mechanically ventilated patients is between 5-40%, increasing to 50-80% in patients suffering from coronavirus disease 2019 (COVID-19). The mortality rate of ventilator-associated pneumonia patients can reach 45%. Treatment of the endotracheal tube biofilms that cause ventilator-associated pneumonia is extremely challenging, with causative organisms able to persist in endotracheal tube biofilm despite appropriate antimicrobial treatment in 56% of ventilator-associated pneumonia patients. Flawed antimicrobial susceptibility testing often means that ventilator-associated pneumonia pathogens are insufficiently treated, resulting in patients experiencing ventilator-associated pneumonia recurrence. Here we present an in vitro endotracheal tube biofilm model that recapitulates key aspects of endotracheal tube biofilms, including dense biofilm growth and elevated antimicrobial tolerance. Thus our biofilm model can be used as a ventilated airway simulating environment, aiding the development of anti-ventilator-associated pneumonia therapies and antimicrobial endotracheal tubes that can one day improve the clinical outcomes of mechanically ventilated patients.