KK
Kai Kummer
Author with expertise in Molecular Mechanisms of Ion Channels Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
0
h-index:
17
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A versatile functional interaction between electrically silent KV subunits and KV7 potassium channels

Vijay Renigunta et al.Jul 14, 2024
Abstract Voltage-gated K + (K V ) channels govern K + ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent K V channels (K V S), however, are unable to conduct currents on their own. It has been assumed that these K V S must obligatorily assemble with subunits from the K V 2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric K V 2 channels. Herein, we show that K V S subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant K V 7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of K V S and K V 7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this K V S and K V 7 interaction may occur. Our findings demonstrate that K V cross-family interaction is much more versatile than previously thought—possibly serving nature to shape potassium conductance to the needs of individual cell types.
0

A Versatile Functional Interaction between Electrically Silent KVSubunits and KV7 Potassium Channels

Vijay Renigunta et al.Feb 27, 2024
Summary Voltage-gated K + (K V ) channels govern K+-ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent K V channels (K V S), however, are unable to conduct currents on their own. It has been assumed that these K V S must obligatorily assemble with subunits from the K V 2 family into heterotetrameric channels, thereby giving raise to currents distinct from those of homomeric K V 2 channels. Herein, we show that K V S subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant K V 7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of K V S and K V 7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this K V S and K V 7 interaction may occur. Our finding demonstrate that K V cross-family interaction is much more versatile than previously thought – possibly serving nature to shape potassium conductance to the needs of individual cell types.
1

NOCICEPTRA: Gene and microRNA signatures and their trajectories characterizing human iPSC-derived nociceptor maturation

Maximilian Zeidler et al.Jun 7, 2021
Abstract Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human iPSC-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining and qPCR validations, revealed expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerged as regulatory hubs for neurite outgrowth, synapse development and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis revealed distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.