JE
Johannes Elferich
Author with expertise in Cryo-Electron Microscopy Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
2
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CTFFIND5 provides improved insight into quality, tilt and thickness of TEM samples

Johannes Elferich et al.Feb 28, 2024
Abstract Images taken by transmission electron microscopes are usually affected by lens aberrations and image defocus, among other factors. These distortions can be modeled in reciprocal space using the contrast transfer function (CTF). Accurate estimation and correction of the CTF is essential for restoring the high-resolution signal in an image and has been one of the key aspects of the “resolution revolution” in cryogenic electron microscopy (cryoEM). Previously, we described the implementation of algorithms for this task in the cis TEM software package (Grant et al ., 2018). Here we show that taking sample characteristics, such as thickness and tilt, into account can improve CTF estimation. This is particularly important when imaging cellular samples, where measurement of sample thickness and geometry derived from accurate modeling of the Thon ring pattern helps judging the quality of the sample. This improved CTF estimation has been implemented in CTFFIND5, a new version of the cis TEM program CTFFIND. We evaluated the accuracy of these estimates using images of tilted aquaporin crystals and eukaryotic cells thinned by focused ion beam milling. We estimate that with micrographs of sufficient quality CTFFIND5 can measure sample tilt with an accuracy of 3° and sample thickness with an accuracy of 5 nm.
0

Single molecule studies of the native hair cell mechanosensory transduction complex

Sarah Clark et al.Jan 1, 2023
Hearing and balance rely on the conversion of a mechanical stimulus into an electrical signal, a process known as mechanosensory transduction (MT). In vertebrates, this process is accomplished by an MT complex that is located in hair cells of the inner ear. While the past three decades of research have identified many subunits that are important for MT and revealed interactions between these subunits, the composition and organization of a functional complex remains unknown. The major challenge associated with studying the MT complex is its extremely low abundance in hair cells; current estimates of MT complex quantity range from 3-60 attomoles per cochlea or utricle, well below the detection limit of most biochemical assays that are used to characterize macromolecular complexes. Here we describe the optimization of two single molecule assays, single molecule pull-down (SiMPull) and single molecule array (SiMoA), to study the composition and quantity of native mouse MT complexes. We demonstrate that these assays are capable of detecting and quantifying low attomoles of the native MT subunits protocadherin-15 (PCDH15) and lipoma HMGIC fusion partner-like protein 5 (LHFPL5). Our results illuminate the stoichiometry of PCDH15- and LHFPL5-containing complexes and establish SiMPull and SiMoA as productive methods for probing the abundance, composition, and arrangement of subunits in the native MT complex.
15

Defocus Corrected Large Area Cryo-EM (DeCo-LACE) for Label-Free Detection of Molecules across Entire Cell Sections

Johannes Elferich et al.Jun 14, 2022
Abstract A major goal of biological imaging is localization of biomolecules inside a cell. Fluorescence microscopy can lo-calize biomolecules inside whole cells and tissues, but its ability to count biomolecules and accuracy of the spatial coordinates is limited by the wavelength of visible light. Cryo-electron microscopy (cryo-EM) provides highly accurate position and orientation information of biomolecules but is often confined to small fields of view inside a cell, limiting biological context. In this study we use a new data-acquisition scheme called “Defocus-Corrected Large-Area cryo-EM” (DeCo-LACE) to collect high-resolution images of entire sections (100 – 200 nm thick lamel-lae) of neutrophil-like mouse cells, representing 1-2% of the total cellular volume. We use 2D template matching (2DTM) to determine localization and orientation of the large ribosomal subunit in these sections. These data provide “maps” of ribosomes across entire sections of mammalian cells. This high-throughput cryo-EM data collection approach together with 2DTM will advance visual proteomics and provide biological insight that cannot be obtained by other methods.
1

Molecular structure and conformation of stereocilia tip-links elucidated by cryo-electron tomography

Johannes Elferich et al.Oct 1, 2021
Abstract Mechanosensory transduction (MT), the conversion of mechanical stimuli into electrical signals, underpins hearing and balance and is carried out within hair cells in the inner ear. Hair cells harbor actin-filled stereocilia, arranged in rows of descending heights, where the tips of stereocilia are connected to their taller neighbors by a filament composed of protocadherin 15 (PCDH15) and cadherin 23 (CDH23), deemed the ‘tip-link’. Tension exerted on the tip-link opens an ion channel at the tip of the shorter stereocilia, thus converting mechanical force into an electrical signal. While biochemical and structural studies have provided insights into the molecular composition and structure of isolated portions of the tip-link, the architecture, location and conformational states of intact tip-links, on stereocilia, remains unknown. Here we report in situ cryo-electron microscopy imaging of the tip-link in mouse stereocilia. We observe individual PCDH15 molecules at the tip and shaft of stereocilia and determine their stoichiometry, conformational heterogeneity, and their complexes with CDH23. The PCDH15/CDH23 complexes occur in clusters, frequently with more than one copy of PCDH15 at the tip of stereocilia, suggesting that tip-links might consist of more than one copy of the PCDH15/CDH23 heterotetramer and by extension, might include multiple MT complexes.