AW
Anna Wernick
Author with expertise in Lysosomal Storage Disorders in Human Health and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
6
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
62

The annotation and function of the Parkinson’s and Gaucher disease-linked geneGBA1has been concealed by its protein-coding pseudogeneGBAP1

Emil Gustavsson et al.Oct 21, 2022
ABSTRACT The human genome contains numerous duplicated regions, such as parent-pseudogene pairs, causing sequencing reads to align equally well to either gene. The extent to which this ambiguity complicates transcriptomic analyses is currently unknown. This is concerning as many parent genes have been linked to disease, including GBA1, causally linked to both Parkinson’s and Gaucher disease. We find that most of the short sequencing reads that map to GBA1 , also map to its pseudogene, GBAP1 . Using long-read RNA-sequencing in human brain, where all reads mapped uniquely, we demonstrate significant differences in expression compared to short-read data. We identify novel transcripts from both GBA1 and GBAP1 , including protein-coding transcripts that are translated in vitro and detected in proteomic data, but that lack GCase activity. By combining long-read with single-nuclear RNA-sequencing to analyse brain-relevant cell types we demonstrate that transcript expression varies by brain region with cell-type-selectivity. Taken together, these results suggest a non-lysosomal function for both GBA1 and GBAP1 in brain. Finally, we demonstrate that inaccuracies in annotation are widespread among parent genes, with implications for many human diseases.
62
Citation5
0
Save
0

GLP1 receptor agonism ameliorates Parkinson’s disease through modulation of neuronal insulin signalling and glial suppression

Dilan Athauda et al.Feb 28, 2024
Abstract Neuronal insulin resistance is linked to the pathogenesis of Parkinson’s disease through unclear, but potentially targetable, mechanisms. We delineated neuronal and glial mechanisms of insulin resistance and glucagon-like 1 peptide (GLP-1) receptor agonism in human iPSC models of synucleinopathy, and corroborated our findings in patient samples from a Phase 2 trial of a GLP-1R agonist in Parkinson’s ( NCT01971242 ). Human iPSC models of synucleinopathy exhibit neuronal insulin resistance and dysfunctional insulin signalling, which is associated with inhibition of the neuroprotective Akt pathways, and increased expression of the MAPK-associated p38 and JNK stress pathways. Ultimately, this imbalance is associated with cellular stress, impaired proteostasis, accumulation of α-synuclein, and neuronal loss. The GLP-1R agonist exenatide led to restoration of insulin signalling, associated with restoration of Akt signalling and suppression of the MAPK pathways in neurons. GLP-1R agonism reverses the neuronal toxicity associated with the synucleinopathy, through reduction of oxidative stress, improved mitochondrial and lysosomal function, reduced aggregation of α-synuclein, and enhanced neuronal viability. GLP-1R agonism further suppresses synuclein induced inflammatory states in glia, leading to neuroprotection through non cell autonomous effects. In the exenatide-PD2 clinical trial, exenatide treatment was associated with clinical improvement in individuals with higher baseline MAPK expression (and thus insulin resistance). Exenatide treatment led to a reduction of α-synuclein aggregates, and a reduction in inflammatory cytokine IL-6. Taken together, our patient platform defines the mechanisms of GLP-1R action in neurons and astrocytes, identifies the population likely to benefit from GLP-1R agonism, and highlights the utility of GLP-1R agonism as a disease modifying strategy in synucleinopathies.
0

Multi-Omic Analysis Reveals Lipid Dysregulation Associated with Mitochondrial Dysfunction in Parkinson's Disease Brain

Jenny Hällqvist et al.Jul 22, 2024
Parkinson's Disease (PD) is an increasingly prevalent condition within the aging population. PD can be attributed to rare genetic mutations, but most cases are sporadic where the gene-environment interactions are unknown/likely contributory. Age related dysregulation of the glycosphingolipid degradation pathway has been implicated in the development of PD, however, our understanding of how brain lipids vary across different regions of the brain, with age and in disease stages, remains limited. In this study we profiled several phospho- and sphingolipid classes in eight distinct regions of the human brain and investigated the association of lipids with a spatio-temporal pathology gradient, utilising PD samples from early, mid, and late stages of the disease. We performed high-precision tissue sampling in conjunction with targeted LC-MS/MS and applied this to post-mortem samples from PD and control subjects. The lipids were analysed for correlations with untargeted proteomics and mitochondrial activity data, in a multi-omics approach. We concluded that the different brain regions demonstrated their own distinct profiles and also found that several lipids were correlated with age. The strongest differences between PD and controls were identified in ganglioside, sphingomyelin and n-hexosylceramides. Sphingomyelin was also found to correlate with several proteins implicated in Parkinson's disease pathways. Mitochondrial activity was correlated with the levels of several lipids in the putamen region. Finally, we identified a gradient corresponding to Braak's disease spread across the brain regions, where the areas closer to the brainstem/substantia nigra showed alterations in PC, LPC and glycosphingolipids, while the cortical regions showed changes in glycosphingolipids, specifically gangliosides, HexCer and Hex2Cer.
1

Protein aggregation and calcium dysregulation are the earliest hallmarks of synucleinopathy in human midbrain dopaminergic neurons

Gurvir Virdi et al.Oct 28, 2022
Abstract Mutations in the SNCA gene cause autosomal dominant Parkinson’s disease (PD), with progressive loss of dopaminergic neurons in the substantia nigra, and accumulation of aggregates of α-synuclein. However, the sequence of molecular events that proceed from the SNCA mutation during development, to its end stage pathology is unknown. Utilising human induced pluripotent stem cells (hiPSCs) with SNCA mutations, we resolved the temporal sequence of pathophysiological events that occur during neuronal differentiation in order to discover the early, and likely causative, events in synucleinopathies. We adapted a small molecule-based protocol that generates highly enriched midbrain dopaminergic (mDA) neurons (>80%). We characterised their molecular identity using single-cell RNA sequencing and their functional identity through the synthesis and secretion of dopamine, the ability to generate action potentials, and form functional synapses and networks. RNA velocity analyses confirmed the developmental transcriptomic trajectory of midbrain neural precursors into mDA neurons using our approach, and identified key driver genes in mDA neuronal development. To characterise the synucleinopathy, we adopted super-resolution methods to determine the number, size and structure of aggregates in SNCA -mutant mDA neurons. At one week of differentiation, prior to maturation to mDA neurons of molecular and functional identity, we demonstrate the formation of small aggregates; specifically, β-sheet rich oligomeric aggregates, in SNCA -mutant midbrain immature neurons. The aggregation progresses over time to accumulate phosphorylated aggregates, and later fibrillar aggregates. When the midbrain neurons were functional, we observed evidence of impaired physiological calcium signalling, with raised basal calcium, and impairments in cytosolic and mitochondrial calcium efflux. Once midbrain identity fully developed, SNCA -mutant neurons exhibited bioenergetic impairments, mitochondrial dysfunction and oxidative stress. During the maturation of mDA neurons, upregulation of mitophagy and autophagy occured, and ultimately these multiple cellular stresses lead to an increase in cell death by six weeks post-differentiation. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD, and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.
17

Structural conversion of α-synuclein at the mitochondria induces neuronal toxicity

Minee Choi et al.Jun 9, 2022
Abstract Aggregation of α-Synuclein (α-Syn) drives Parkinson’s disease, although the initial stages of self-assembly and structural conversion have not been captured inside neurons. We track the intracellular conformational states of α-Syn utilizing a single-molecule FRET biosensor, and show that α-Syn converts from its monomeric state to form two distinct oligomeric states in neurons in a concentration dependent, and sequence specific manner. 3D FRET-CLEM reveals the structural organization, and location of aggregation hotspots inside the cell. Notably multiple intracellular seeding events occur preferentially on membrane surfaces, especially mitochondrial membranes. The mitochondrial lipid, cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial ROS generation, which accelerates the oligomerization of A53T α-Syn, and ultimately causes permeabilization of mitochondrial membranes, and cell death. Patient iPSC derived neurons harboring A53T mutations exhibit accelerated oligomerization that is dependent on mitochondrial ROS, early mitochondrial permeabilization and neuronal death. Our study highlights a mechanism of de novo oligomerization at the mitochondria and its induction of neuronal toxicity.