SR
Sébastien Rigali
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(56% Open Access)
Cited by:
381
h-index:
34
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

The virulome ofStreptomyces scabieiin response to cello-oligosaccharides elicitors

Benoit Deflandre et al.Aug 11, 2021
2. Abstract The development of spots or lesions symptomatic of the common scab disease on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87-22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S . scabiei is in turn boosted by the cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87-22 show a production and/or transcriptional response to cello-oligosaccharides. Comparative metabolomic and transcriptomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include i) thaxtomins and concanamycins phytotoxins (and to a lesser extent N-coronafacoyl-L-isoleucine), ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, iii) ectoine for protection against osmotic shock once inside the host, and iv) bottromycins and concanamycins antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cell-oligosaccharides reduced the production of the spore germination inhibitors germicidins and the plant growth regulators rotihibins. The metabolomic study also revealed that cellotriose is in general a more potent elicitor of the virulome compared to cellobiose. This result supports an earlier hypothesis that suggested that the trisaccharide would be the real virulence-triggering factor released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs’ expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of another master regulator sensing the internalization of cello-oligosaccharides. Finally, we found nine additional cryptic and orphan BGCs that have their expression awakened by cello-oligosaccharides, demonstrating that other and yet to be discovered metabolites are part of the virulome of S . scabiei . 3. Impact statement Unveiling the environmental triggers that signal proper conditions for host colonization and what is the composition of the arsenal of metabolites specialized for this task (the virulome) is key to understand host-pathogen interactions. In this work, focused on the induction of the common scab disease caused by Streptomyces species, we provided further knowledge to both aspects i.e., i) highlighting the capability of cellotriose to trigger the entire virulome and not only the production of thaxtomin phytotoxins, and ii) identifying the set of metabolites that specifically respond to cello-oligosaccharides emanating from the plant under attack. Importantly, we also revealed that the expression of nine cryptic/orphan biosynthetic gene clusters (BGCs) involved in the production of unknown compounds was drastically activated upon cello-oligosaccharides import suggesting that a significant part of the virulome of S . scabiei remains to be discovered. Finally, we unexpectedly found that the expression control of most of the known and cryptic BGCs does not depend on the cello-oligosaccharide utilization repressor CebR which suggests the existence of another and yet unknown master regulator of the virulence in S . scabiei . 4. Significance as a BioResource to the community Not Applicable 5. Outcome Not Applicable 6. Data summary [A section describing all supporting external data including the DOI(s) and/or accession numbers(s), and the associated URL.] The authors confirm all supporting data, code and protocols have been provided within the article or through supplementary data files. RNAseq data were publicly deposited, and our experimental and analytical pipeline were described on the GEO database repository (Accession number: GSE181490)
5
Citation2
0
Save
0

LogoMotif: a comprehensive database of transcription factor binding site profiles in Actinobacteria

Hannah Augustijn et al.Mar 3, 2024
Abstract Actinobacteria undergo a complex multicellular life cycle and produce a wide range of specialized metabolites, including the majority of the antibiotics. These biological processes are controlled by intricate regulatory pathways, and to better understand how they are controlled we need to augment our insights into the transcription factor binding sites. Here, we present LogoMotif ( https://logomotif.bioinformatics.nl ), an open-source database for characterized and predicted transcription factor binding sites in Actinobacteria, along with their cognate position weight matrices and hidden Markov models. Genome-wide predictions of binding site locations in Streptomyces model organisms are supplied and visualized in interactive regulatory networks. In the web interface, users can freely access, download and investigate the underlying data. With this curated collection of actinobacterial regulatory interactions, LogoMotif serves as a basis for binding site predictions, thus providing users with clues on how to elicit the expression of genes of interest and guide genome mining efforts. Highlights Actinobacterial regulatory networks are key for compound discovery, including antibiotics. Contains ∼400 validated and ∼12,100 predicted interactions, presented in interactive networks. Serves as foundation for regulatory predictions in the gene cluster detection tool, antiSMASH. LogoMotif’s data and algorithms provide knowledge on expression and functional inference of genes. LogoMotif aids in the discovery of novel chemistry within Actinobacteria and beyond. Graphical abstract
0
Citation1
0
Save
1

Structure and function of BcpE2, the most promiscuous GH3-family beta-glucosidase for scavenging glucose from heterosides

Benoit Deflandre et al.Jan 23, 2022
Abstract Cellulose being the most abundant polysaccharide on earth, beta-glucosidases hydrolyzing cello-oligosaccharides are key enzymes to fuel glycolysis in microorganisms developing on plant material. In Streptomyces scabiei , the causative agent of common scab in root and tuber crops, a genetic compensation phenomenon safeguards the loss of the gene encoding the cello-oligosaccharide hydrolase BglC by awakening the expression of alternative beta-glucosidases. Here we reveal that the BglC compensating enzyme BcpE2 is the GH3-family beta-glucosidase that displays the highest reported substrate promiscuity able to release the glucose moiety of all tested types of plant-derived heterosides (aryl β-glucosides, monolignol glucosides, cyanogenic glucosides, anthocyanosides, and coumarin heterosides). BcpE2 structure analysis highlighted a large cavity in the PA14 domain that covers the active site, and the high flexibility of this domain would allow proper adjustment of this cavity for disparate heterosides. The exceptional substrate promiscuity of BcpE2 provides microorganisms a versatile tool for scavenging glucose from plant-derived nutrients that widely vary in size and structure. Importantly, scopolin is the only substrate commonly hydrolyzed by both BglC and BcpE2 thereby generating the potent virulence inhibitor scopoletin. Next to fueling glycolysis, both enzymes thus also interfere with the plant defense mechanisms to fine-tune the strength of virulence.
1
Citation1
0
Save
0

Assessment Of The Potential Role Of Streptomyces In Cave Moonmilk Formation

Marta Maciejewska et al.May 8, 2017
Moonmilk is a karstic speleothem mainly composed of fine calcium carbonate crystals (CaCO3) with different textures ranging from pasty to hard, in which the contribution of biotic rock-building processes is presumed to involve indigenous microorganisms. The real bacterial input in the genesis of moonmilk is difficult to assess leading to controversial hypotheses explaining the origins and the mechanisms (biotic versus abiotic) involved. In this work we undertook a comprehensive approach in order to assess the potential role of filamentous bacteria, particularly a collection of moonmilk-originating Streptomyces, in the genesis of this speleothem. Scanning electron microscopy (SEM) confirmed that indigenous filamentous bacteria could indeed participate in moonmilk development by serving as nucleation sites for CaCO3 deposition. The metabolic activities involved in CaCO3 transformation were furthermore assessed in vitro among the collection of moonmilk Streptomyces, which revealed that peptides/amino acids ammonification, and to a lesser extend ureolysis, could be privileged metabolic pathways participating in carbonate precipitation by increasing the pH of the bacterial environment. Additionally, in silico search for the genes involved in biomineralization processes including ureolysis, dissimilatory nitrate reduction to ammonia, active calcium ion transport, and reversible hydration of CO2 allowed to identify genetic predispositions for carbonate precipitation in Streptomyces. Finally, their biomineralization abilities were confirmed by environmental SEM, which allowed to visualize the formation of abundant mineral deposits under laboratory conditions. Overall, our study provides novel evidences that filamentous Actinobacteria could be key protagonists in the genesis of moonmilk through a wide spectrum of biomineralization processes.
0

Contribution of the β-glucosidase BglC to the Onset of the Pathogenic Lifestyle of Streptomyces scabies

Samuel Jourdan et al.Sep 23, 2017
Abstract Common scab disease on root and tuber plants is caused by Streptomyces scabies and related species which use the cellulose synthase inhibitor thaxtomin A as main phytotoxin. Thaxtomin production is primarily triggered by the import of cello-oligosaccharides. Once inside the cell, the fate of the cello-oligosaccharides is dichotomized into i) fueling glycolysis with glucose for the saprophytic lifestyle through the action of β-glucosidase(s) (BG), and ii) eliciting the pathogenic lifestyle by inhibiting the CebR-mediated transcriptional repression of thaxtomin biosynthetic genes. Here we investigated the role of scab57721 encoding a putative BG (BglC) in the onset of the pathogenicity of S. scabies . Enzymatic assays showed that BglC was able to release glucose from cellobiose, cellotriose and all other cello-oligosaccharides tested. Its inactivation resulted in a phenotype opposite to what was expected as we monitored reduced production of thaxtomin when the mutant was cultivated on media containing cello-oligosaccharides as unique carbon source. This unexpected phenotype could be attributed to the highly increased activity of alternative intracellular BGs, probably as a compensation of bglC inactivation, which then prevented cellobiose and cellotriose accumulation to reduce the activity of CebR. In contrast, when the bglC null mutant was cultivated on media devoid of cello-oligosaccharides it instead constitutively produced thaxtomin. This observed hypervirulent phenotype does not fit with the proposed model of the cello-oligosaccharide-mediated induction of thaxtomin production and suggests that the role of BglC in the route to the pathogenic lifestyle of S. scabies is more complex than currently presented.
1

The fate of bacterial secondary metabolites in the rhizosphere:Streptomycesdegrades and feeds on cyclic lipopeptides produced by competitors

Augustin Rigolet et al.Jul 28, 2023
Abstract Cyclic lipopeptides are key bioactive secondary metabolites produced by some plant beneficial rhizobacteria such as Pseudomonas and Bacillus . They exhibit antimicrobial properties, promote induced systemic resistance in plants and support key developmental traits including motility, biofilm formation and root colonization. However, our knowledge about the fate of lipopeptides once released in the environment and especially upon contact with neighboring rhizobacteria remains limited. Here, we investigated the enzymatic degradation of Bacillus and Pseudomonas cyclic lipopeptides by Streptomyces venezuelae . We observed that Streptomyces is able to degrade the three lipopeptides surfactin, iturin and fengycin upon confrontation with of B. velezensis in vitro and in planta according to specific mechanisms. S. venezuelae was also able to degrade the structurally diverse sessilin, tolaasin, orfamide, xantholisin and putisolvin-type lipopeptides produced by Pseudomonas , indicating that this trait is likely engage in the interaction with various competitors.Furthermore, the degradation of CLPs is associated with the release of free amino and fatty acids and was found to enhance Streptomyces growth, indicating a possible nutritional utilization. Thereby, this work stresses on how the enzymatic arsenal of S. venezuelae may contribute to its adaptation to BSMs-driven interactions with microbial competitors. The ability of Streptomyces to degrade exogenous lipopeptides and feed on them adds a new facet to the implications of the degradation of those compounds by Streptomyces , where linearization of surfactin was previously reported as a detoxification mechanism. Additionally, we hypothesize that lipopeptide-producing rhizobacteria and their biocontrol potential are impacted by the degradation of their lipopeptides as observed with the polarized motility of B. velezensis , avoiding the confrontation zone with Streptomyces and the loss of antifungal properties of degraded iturin. This work illustrates how CLPs, once released in the environment, may rapidly be remodeled or degraded by members of the bacterial community, with potential impacts on CLP-producing rhizobacteria and the biocontrol products derived from them.
1

BglC of Streptomyces scabiei is a scopolin-hydrolyzing β-glucosidase interfering with the host defense mechanism

Benoit Deflandre et al.Oct 21, 2021
Abstract The beta-glucosidase BglC fulfills multiple functions in both primary metabolism and induction of pathogenicity of Streptomyces scabiei , the causative agent of the common scab disease of root and tuber crops. Indeed, this enzyme hydrolyzes cellobiose and cellotriose to directly feed glycolysis with glucose, but also modifies the intracellular concentration of these cello-oligosaccharides which are the virulence elicitors. The inactivation of bglC also led to unexpected phenotypes such as the constitutive overproduction of thaxtomin A, the main virulence determinant of S. scabiei . In this work we revealed a new target substrate of BglC, the phytoalexin scopolin. Removal of the glucose moiety of scopolin generates scopoletin, a potent inhibitor of thaxtomin A production. The hydrolysis of scopolin by BglC presents substrate inhibition kinetics which contrasts with the typical Michaelis–Menten saturation curve previously observed for the degradation of its natural substrate cellobiose. Our work therefore reveals that BglC targets both cello-oligosaccharide elicitors emanating from the hosts of S. scabiei , and the scopolin phytoalexin generated by the host defense mechanisms, thereby occupying a key position to fine-tune the production of the main virulence determinant thaxtomin A.
0

Bagremycin Antibiotics and Ferroverdin iron-chelators are synthetized by the Same Gene Cluster

Loïc Martinet et al.May 8, 2019
Biosynthetic gene clusters (BGCs) are organized groups of genes involved in the production of specialized metabolites. Typically, one BGC is responsible for the production of one or several similar compounds with bioactivities that usually only vary in terms of strength and/or specificity. Here we show that the previously described ferroverdins and bagremycins, which are families of metabolites with different bioactivities, are produced from the same BGC, whereby the fate of the biosynthetic pathway depends on iron availability. Under conditions of iron depletion, the monomeric bagremycins are formed, which are amino-aromatic antibiotics resulting from the condensation of 3-amino-4-hydroxybenzoic acid with p-vinylphenol. Conversely, when iron is abundantly available, the biosynthetic pathway additionally produces a molecule based on p-vinylphenyl-3-nitroso-4-hydroxybenzoate, which complexes iron to form the trimeric ferroverdins that have anticholesterol activity. Thus our work challenges the concept that BGCs should produce a single family of molecules with one type of bioactivity, the occurrence of the different metabolites being triggered by the environmental conditions.
Load More