MK
Matthew Kutys
Author with expertise in Role of Hippo Signaling Pathway in Mechanotransduction
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
2
h-index:
14
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Doublecortin reinforces microtubules to promote growth cone advance in soft environments

Alessandro Dema et al.Feb 29, 2024
+6
J
R
A
Doublecortin (DCX) is a microtubule-associated protein critical for brain development. Although most highly expressed in the developing central nervous system, the molecular function of DCX in neuron morphogenesis remains unknown and controversial. We demonstrate that DCX function is intimately linked to its microtubule-binding activity. By using human induced pluripotent stem cell (hiPSC)- derived cortical i
0
Citation2
0
Save
0

Quantitative Comparison of Monomeric StayGold Variants Using Protein Nanocages in Living Cells

Giulia Viola et al.Sep 17, 2024
+2
J
K
G
Abstract To standardize comparison of fluorescent proteins and independently determine which monomeric StayGold variant is best for live microscopy, we analyzed fluorescent protein tagged I3-01 peptides that self-assemble into stable sixty subunit dodecahedrons inside live cells. We find mStayGold is 3-fold brighter and 3-fold more photostable compared with EGFP and superior to other monomeric variants in mammalian cytoplasm. In addition, analysis of intracellular nanocage diffusion confirms the monomeric nature of mStayGold.
34

Notch1 cortical signaling regulates epithelial architecture and cell-cell adhesion

Matthew White et al.Jan 23, 2023
M
T
K
M
Notch receptors control tissue morphogenic processes that involve coordinated changes in cell architecture and gene expression, but how a single receptor can produce these diverse biological outputs is unclear. Here we employ a 3D organotypic model of a ductal epithelium to reveal tissue morphogenic defects result from loss of Notch1, but not Notch1 transcriptional signaling. Instead, defects in duct morphogenesis are driven by dysregulated epithelial cell architecture and mitogenic signaling which result from loss of a transcription-independent Notch1 cortical signaling mechanism that ultimately functions to stabilize adherens junctions and cortical actin. We identify that Notch1 localization and cortical signaling are tied to apical-basal cell restructuring and discover a Notch1-FAM83H interaction underlies stabilization of adherens junctions and cortical actin. Together, these results offer new insights into Notch1 signaling and regulation, and advance a paradigm in which transcriptional and cell adhesive programs might be coordinated by a single receptor.
10

Size-dependent protein segregation creates a spatial switch for Notch signaling and function

Minsuk Kwak et al.Jun 29, 2020
+17
Y
A
M
Aberrant cleavage of Notch by γ-secretase is implicated in numerous diseases, but how cleavage is regulated in space and time is unclear. Here, we report that cadherin-based adherens junctions (cadAJs) are sites of high cell-surface γ-secretase activity, as well as sites of constrained physical space that excludes γ-secretase substrates having large extracellular domains (ECDs) like Notch. ECD shedding initiates drastic spatial relocalization of Notch to cadAJs, allowing enzyme-substrate interactions and downstream signaling. Spatial mutations by adjusting the ECD size or the physical constraint alter signaling. Dysregulation of this spatial switch promotes precocious differentiation of ventricular zone neural progenitor cells in vivo. We show the generality of this spatial switch for amyloid precursor protein proteolysis. Thus, cadAJs create spatially distinct biochemical compartments regulating cleavage events involving γ-secretase and preventing aberrant activation of receptors. One Sentence Summary Notch cleavage by γ-secretase is regulated through dynamic spatial control of receptors, adhesion molecules, and activating proteases
1

Arp2/3 Complex Activity Enables Nuclear YAP for Naïve Pluripotency of Human Embryonic Stem Cells

Nathaniel Meyer et al.Jan 16, 2023
+2
M
T
N
Abstract Our understanding of transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency that includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, uniform cell mechanics within naïve colonies, nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.
0

Arp2/3 complex activity enables nuclear YAP for naïve pluripotency of human embryonic stem cells

Nathaniel Meyer et al.Sep 25, 2024
+2
M
T
N
Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.
3

Microphysiological vascular malformation model reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation

Wen Aw et al.Sep 4, 2022
+12
H
C
W
Abstract Somatic activating mutations of PIK3CA are associated with the development of vascular malformations (VMs). Here, we describe a microfluidic model of PIK3CA -driven VMs consisting of human umbilical vein endothelial cells (HUVECs) expressing PIK3CA activating mutations embedded in 3D hydrogels. We observed enlarged and irregular vessel phenotypes, consistent with clinical signatures and concomitant with PI3K-driven upregulation of Rac1/PAK, MEK/ERK, and mTORC1/2 signaling. We observed differential effects between Alpelisib, a PIK3CA inhibitor, and Rapamycin, an mTORC1 inhibitor, in mitigating matrix degradation and vascular network topology. While both drugs are effective in preventing vessel enlargement, Alpelisib suppressed mTORC2-dependent AKT1 phosphorylation and MEK/ERK signaling. Rapamycin failed to reduce MEK/ERK and mTORC2 activity and resulted in vascular hyperbranching, while inhibiting PAK, MEK1/2, and mTORC1/2 signaling mitigates abnormal growth and vascular dilation. Collectively, these findings establish an in vitro platform for modeling VMs and confirm a role of dysregulated Rac1/PAK and mTORC1/2 signaling in PIK3CA -driven VMs.