IH
Ingo Hantke
Author with expertise in Bacterial Physiology and Genetics
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The alarmone (p)ppGpp is part of the heat shock response of Bacillus subtilis

Heinrich Schäfer et al.Jul 1, 2019
+10
W
B
H
Here, B. subtilis was used as a model organism to investigate how cells respond and adapt to proteotoxic stress conditions. Our experiments suggested that the stringent response, caused by raised levels of the (p)ppGpp alarmone, plays a role during thermotolerance development and the heat shock response. Accordingly, our experiments revealed a rapid increase of cellular (p)ppGpp levels upon heat shock as well as salt- and oxidative stress. Strains lacking (p)ppGpp exhibited increased stress sensitivity, while raised (p)ppGpp levels conferred increased stress tolerance to heat- and oxidative stress. During thermotolerance development, stress response genes were highly up-regulated together with a concurrent transcriptional down-regulation of the rRNA, which was influenced by the second messenger (p)ppGpp and the transcription fac-tor Spx. Remarkably, we observed that (p)ppGpp appeared to control the cellular translational capacity and that during heat stress the raised cellular levels of the alarmone were able to curb the rate of protein synthesis. Furthermore, (p)ppGpp controls the heat-induced expression of Hpf and thus the formation of translationally inactive 100S disomes. These results indicate that B. subtilis cells respond to heat-mediated protein unfolding and aggregation, not only by raising the cellular repair capacity, but also by decreasing translation involving (p)ppGpp medi-ated stringent response to concurrently reduce the protein load for the cellular protein quality control system.
0

Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control

Marta Carroni et al.Jul 20, 2017
+9
M
K
M
Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.
0

Xenogeneic regulation of the ClpCP protease of Bacillus subtilis by a phage-encoded adaptor-like protein

Nancy Mulvenna et al.Mar 6, 2019
+3
L
I
N
SPO1 phage infection of Bacillus subtilis results in a comprehensive remodelling of processes leading to conversion of the bacterial cell into a factory for phage progeny production. A cluster of 26 genes in the SPO1 genome, called the host takeover module, encodes for potentially cytotoxic proteins for the specific shut down of various host processes including transcription, DNA synthesis and cell division. However, the properties and bacterial targets of many genes of the SPO1 host takeover module remain elusive. Through a systematic analysis of gene products encoded by the SPO1 host takeover module we identified eight gene products which attenuated B. subtilis growth. Out of the eight gene products that attenuated bacterial growth, a 25 kDa protein, called Gp53, was shown to interact with the AAA+ chaperone protein ClpC of the ClpCP protease of B. subtilis. Results reveal that Gp53 functions like a phage encoded adaptor protein and thereby appears to alter the substrate specificity of the ClpCP protease to modulate the proteome of the infected cell to benefit efficient SPO1 phage progeny development. It seems that Gp53 represents a novel strategy used by phages to acquire their bacterial prey.
0

A novel ClpC adaptor protein that functions in the developingBacillus subtilisspore

Shawn Massoni et al.Mar 3, 2024
+11
I
N
S
ABSTRACT Bacterial protein degradation machinery, which comprises mix-and-match chaperone-protease pairs, plays vital roles in the bacterial life-cycle, and its manipulation has begun to spark interest as an alternative antimicrobial strategy. ClpC-ClpP (ClpCP) is one such chaperone-protease, recruited by adaptors to specific functions in the Gram positive model bacterium Bacillus subtilis . Using genetic approaches, we have identified a new adaptor protein, YjbA, that recruits ClpCP during sporulation, a developmental process by which B. subtilis can wait out unfavorable environmental conditions by becoming hardy, dormant spores. A knockout of yjbA strongly stimulates gene expression in the developing spore; conversely, aberrant overexpression of yjbA during vegetative growth is toxic. A combination of in vivo and in vitro experiments demonstrates that YjbA and ClpC directly interact, and that this interaction induces ClpC oligomerization and ATPase activity. Finally, a co-crystal structure reveals that YjbA binds to the ClpC N-terminal domain at a location distinct from that bound by the well-characterized adaptor protein MecA, but similar to the interaction site on the Mycobacterium tuberculosis ClpC1 N-terminal domain where bactericidal cyclic peptides bind. Based on these data, we speculate that YjbA induces ClpCP to degrade substrate proteins in the developing spore, thereby facilitating steps towards metabolic dormancy.
15

The control of protein arginine phosphorylation facilitates proteostasis by an AAA+ chaperone protease system

Regina Alver et al.Sep 15, 2022
+5
F
I
R
Abstract We could demonstrate that the AAA+ unfoldase ClpC together with the protein arginine kinase and adaptor protein McsB, its activator McsA and the phosphatase YwlE form a unique chaperone system. Here, the McsA-activated McsB phosphorylates and targets aggregated substrate proteins for extraction and unfolding by ClpC. Sub-stoichiometric amounts of the YwlE phosphatase enhanced the ClpC/McsB/McsA mediated disaggregation and facilitated the de-phosphorylation of the arginine-phosphorylated substrate protein extruded by ClpC, allowing its subsequent refolding. Interestingly, the successfully refolded protein escaped degradation by the loosely associated ClpP protease. This unique chaperone system is thereby able to disaggregate and refold aggregated proteins but can also remove severely damaged protein aggregates by degradation.