TP
Tomasz Prajsnar
Author with expertise in Role of Neutrophil Extracellular Traps in Immunity
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
7
h-index:
21
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Targeting mononuclear phagocytes for eradicating intracellular parasites

Loris Rizzello et al.Mar 22, 2017
Mononuclear phagocytes such as monocytes, tissue-specific macrophages and dendritic cells are primary actors in both innate and adaptive immunity, as well as tissue homoeostasis. They have key roles in a range of physiological and pathological processes, so any strategy targeting these cells will have wide-ranging impact. These phagocytes can be parasitized by intracellular bacteria, turning them from housekeepers to hiding places and favouring chronic and/or disseminated infection. One of the most infamous is the bacteria that cause tuberculosis, which is the most pandemic and one of the deadliest disease with one third of the world’s population infected, and 1.8 million deaths worldwide in 2015. Here we demonstrate the effective targeting and intracellular delivery of antibiotics to both circulating monocytes and resident macrophages, using pH sensitive nanoscopic polymersomes made of poly(2-(methacryloyloxy)ethyl phosphorylcholine)-co-poly(2-(di-isopropylamino)ethyl methacrylate) (PMPC-PDPA). Polymersome selectivity to mononuclear phagocytes is demonstrated and ascribed to the polymerised phosphorylcholine motifs affinity toward scavenger receptors. Finally, we demonstrate the successful exploitation of this targeting for the effective eradication of intracellular bacteria that cause tuberculosis Mycobacterium tuberculosis as well as other intracellular parasites including the Mycobacterium bovis, Mycobacterium marinum and the most common bacteria associated with antibiotic resistance, the Staphylococcus aureus .
0
Citation4
0
Save
5

Dram1 confers resistance to Salmonella infection

Samrah Masud et al.Mar 21, 2021
Abstract Dram1 is a stress and infection inducible autophagy modulator that functions downstream of transcription factors p53 and NFκB. Using a zebrafish embryo infection model, we have previously shown that Dram1 provides protection against the intracellular pathogen Mycobacterium marinum by promoting the p62-dependent xenophagy of bacteria that have escaped into the cytosol. However, the possible interplay between Dram1 and other anti-bacterial autophagic mechanisms remains unknown. Recently, LC3-associated phagocytosis (LAP) has emerged as an important host defense mechanism that requires components of the autophagy machinery and targets bacteria directly in phagosomes. Our previous work established LAP as the main autophagic mechanism by which macrophages restrict growth of Salmonella Typhimurium in a systemically infected zebrafish host. We therefore employed this infection model to investigate the possible role of Dram1 in LAP. Morpholino knockdown or CRISPR/Cas9-mediated mutation of Dram1 led to reduced host survival and increased bacterial burden during S . Typhimurium infections. In contrast, overexpression of dram1 by mRNA injection curtailed Salmonella replication and reduced mortality of the infected host. During the early response to infection, GFP-Lc3 levels in transgenic zebrafish larvae correlated with the dram1 expression level, showing over two-fold reduction of GFP-Lc3- Salmonella association in dram1 knockdown or mutant embryos and an approximately 30% increase by dram1 overexpression. Since LAP is known to require the activity of the phagosomal NADPH oxidase, we used a Salmonella biosensor strain to detect bacterial exposure to reactive oxygen species (ROS) and found that the ROS response was largely abolished in the absence of dram1 . Together, these results demonstrate the host protective role of Dram1 during S . Typhimurium infection and suggest a functional link between Dram1 and the induction of LAP.
5
Citation2
0
Save
0

Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and resistance to innate immunity

Robert Smith et al.Nov 26, 2018
Enterococcus faecalis is an opportunistic pathogen with an intrinsically high resistance to lysozyme, a key effector of the innate immune system. This high level of resistance requires several genes (oatA, pgdA, dltA and sigV) acting synergistically to inhibit both the enzymatic and cationic antimicrobial peptide activities of lysozyme. We sought to identify novel genes modulating E. faecalis resistance to lysozyme. Random transposon mutagenesis carried out in the quadruple oatA/pgdA/dltA/sigV mutant led to the identification of several independent insertions clustered on the chromosome. These mutations were located in a locus referred to as the enterococcal polysaccharide antigen (EPA) variable region located downstream of the highly conserved epaA-epaR genes proposed to encode a core synthetic machinery. The epa variable region was previously proposed to be responsible for EPA decorations, but the role of this locus remains largely unknown. Here, we show that EPA decoration contributes to resistance towards charged antimicrobials and underpins virulence in the zebrafish model of infection by conferring resistance to phagocytosis. Collectively, our results indicate that the production of the EPA rhamnopolysaccharide backbone is not sufficient to promote E. faecalis infections and reveal an essential role of the modification of this surface polymer for enterococcal pathogenesis.
0

Fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum

Xinglin Zhang et al.Jan 21, 2017
Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. Here, we identify genes that contribute to growth of E. faecium in human serum. We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, to completion and then compared its transcriptome during exponential growth in rich medium and in human serum by RNA-seq. This analysis revealed that 27.8% of genes on the E. faecium E745 genome were differentially expressed in these two conditions. A gene cluster with a role in purine biosynthesis was among the most upregulated genes in E. faecium E745 upon growth in serum. A high-throughput transposon sequencing (Tn-seq) approach was used to identify conditionally essential genes in E. faecium E745 during growth in serum. Genes involved in de novo nucleotide biosysnthesis (including pyrK_2, pyrF, purD, purH) and a gene encoding a phosphotransferase system subunit (manY_2) were thus identified to be contributing to E. faecium growth in human serum. Transposon mutants in pyrK_2, pyrF, purD, purH and manY_2 were isolated from the library and their impaired growth in human serum was confirmed. In addition, the pyrK_2 and manY_2 mutants also exhibited significantly attenuated virulence in an intravenous zebrafish infection model. We conclude that genes involved in carbohydrate and nucleotide metabolism of E. faecium are essential for growth in human serum and contribute to the pathogenesis of this organism.
0

Pulses of Class I PI3kinase activity identify the release and recapture of prey from neutrophil phagosomes

Clare Muir et al.Feb 29, 2024
Summary Class I PI3kinases coordinate the delivery of microbicidal effectors to the phagosome by forming the phosphoinositide lipid second messenger, phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3). However, the dynamics of PIP3 in neutrophils during a bacterial infection are unknown. We have therefore developed an in vivo, live zebrafish infection model that enables visualisation of dynamic changes in Class 1 PI3kinases (PI3K) signalling on neutrophil phagosomes in real-time. We have identified that on approximately 12% of neutrophil phagosomes PHAkt-eGFP, a reporter for Class 1 PI3K signalling, re-recruits in pulsatile bursts. This phenomenon occurred on phagosomes containing structurally and morphologically distinct prey, including Staphylococcus aureus and Mycobacterium abscessus , and was dependent on the activity of the Class 1 PI3K isoform, PI3kinase γ. Detailed imaging suggested that ‘pulsing phagosomes’ represent neutrophils transiently reopening and reclosing phagosomes. This finding challenges the concept that phagosomes remain closed after prey engulfment and we propose that neutrophils occasionally use this alternative pathway of phagosome maturation to release phagosome contents and/or to restart phagosome maturation if digestion has stalled.
0

Neutrophils use selective autophagy receptor p62/SQSTM1 to target Staphylococcus aureus for degradation in vivo in zebrafish

Josie Gibson et al.Apr 11, 2019
Autophagy leads to degradation of cellular components and has an important role in restricting intracellular pathogens. Autophagy receptors, including p62, target invading intracellular pathogens to the autophagy pathway for degradation. Staphylococcus aureus is a significant pathogen of humans and often life-threatening in the immunocompromised. Increasing evidence demonstrates that S. aureus is an intracellular pathogen of immune cells and may use neutrophils as proliferative niche but the intracellular fate of S. aureus following phagocytosis by neutrophils has not previously been analysed in vivo. In vitro , p62 is able to co-localise with intracellular Staphylococcus aureus , but whether p62 is beneficial or detrimental in host defence against S. aureus in vivo had not been determined.Here we use zebrafish to determine the fate and location of S. aureus within neutrophils throughout infection. We show that Lc3 and p62 recruitment to phagocytosed S. aureus is altered depending on the bacterial location within the neutrophil. We also show rapid Lc3 marking of bacterial phagosomes within neutrophils which may be associated with subsequent bacterial degradation. Finally, we find that p62 is important for controlling cytosolic bacteria demonstrating for the first time a key role of p62 in autophagic control of S. aureus in neutrophils.
0

A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase

Kyle Buchan et al.Oct 30, 2018
The neutrophil enzyme myeloperoxidase (MPO) is a major enzyme made by neutrophils to generate antimicrobial and immunomodulatory compounds, notably hypochlorous acid (HOCl), amplifying their capacity for destroying pathogens and regulating inflammation. Despite its roles in innate immunity, the importance of MPO in preventing infection is unclear, as individuals with MPO deficiency are asymptomatic with the exception of an increased risk of candidiasis. Dysregulation of MPO activity is also linked with inflammatory conditions such as atherosclerosis, emphasising a need to understand the roles of the enzyme in greater detail. Consequently, new tools for investigating granular dynamics in vivo can provide useful insights into how MPO localises within neutrophils, aiding understanding of its role in preventing and exacerbating disease. The zebrafish is a powerful model for investigating the immune system in vivo, as it is genetically tractable, and optically transparent. To visualise MPO activity within zebrafish neutrophils, we created a genetic construct that expresses human MPO as a fusion protein with a C-terminal fluorescent tag, driven by the neutrophil-specific promoter lyz. After introducing the construct into the zebrafish genome by Tol2 transgenesis, we established the Tg(lyz:Hsa.MPO-mEmerald,cmlc2:EGFP)sh496 line, and confirmed transgene expression in zebrafish neutrophils. We observed localisation of MPO-mEmerald within a subcellular location resembling neutrophil granules, mirroring MPO in human neutrophils. In Spotless (mpxNL144) larvae - which express a non-functional zebrafish myeloperoxidase - the MPO-mEmerald transgene does not disrupt neutrophil migration to sites of infection or inflammation, suggesting that it is a suitable line for the study of neutrophil granule function. We present a novel transgenic line that can be used to investigate neutrophil granule dynamics in vivo without disrupting neutrophil behaviour, with potential applications in studying processing and maturation of MPO during development.
0

The autophagic response to Staphylococcus aureus provides an intracellular niche in neutrophils

Tomasz Prajsnar et al.Mar 18, 2019
Staphylococcus aureus is a major human pathogen causing multiple pathologies, from cutaneous lesions to life-threatening sepsis. Although neutrophils contribute to immunity against S. aureus, multiple lines of evidence suggest that these phagocytes can provide an intracellular niche for staphylococcal dissemination. However, the mechanism of neutrophil subversion by intracellular S. aureus remains unknown. Targeting of intracellular pathogens by autophagy is recognised as an important component of host innate immunity, but whether autophagy is beneficial or detrimental to S. aureus-infected hosts remains controversial. Here, using larval zebrafish we show that S. aureus is rapidly decorated by the autophagy marker Lc3 following engulfment by macrophages and neutrophils. Upon phagocytosis by neutrophils, Lc3-positive, non-acidified spacious phagosomes are formed. This response is dependent on phagocyte NADPH oxidase as both cyba knockdown and diphenyleneiodonium (DPI) treatment inhibited Lc3 decoration of phagosomes. Importantly, NADPH oxidase inhibition diverted neutrophil S. aureus processing into tight acidified vesicles, which resulted in increased host resistance to the infection. Some intracellular bacteria within neutrophils were also tagged by p62-GFP fusion protein and loss of p62 impaired host defence. Taken together, we have shown that intracellular handling of S. aureus by neutrophils is best explained by Lc3-associated phagocytosis (LAP), which appears to provide an intracellular niche for bacterial pathogenesis, while the selective autophagy receptor p62 is host-protective. The antagonistic roles of LAP and p62-mediated pathways in S. aureus-infected neutrophils may explain the conflicting reports relating to anti-staphylococcal autophagy and provide new insights for therapeutic strategies against antimicrobial resistant staphylococci.