CB
Charles Burant
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(76% Open Access)
Cited by:
8,050
h-index:
72
/
i10-index:
175
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Identification of Pancreatic Cancer Stem Cells

Chenwei Li et al.Feb 1, 2007
Abstract Emerging evidence has suggested that the capability of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. Although data have been provided to support this theory in human blood, brain, and breast cancers, the identity of pancreatic cancer stem cells has not been determined. Using a xenograft model in which primary human pancreatic adenocarcinomas were grown in immunocompromised mice, we identified a highly tumorigenic subpopulation of pancreatic cancer cells expressing the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA). Pancreatic cancer cells with the CD44+CD24+ESA+ phenotype (0.2–0.8% of pancreatic cancer cells) had a 100-fold increased tumorigenic potential compared with nontumorigenic cancer cells, with 50% of animals injected with as few as 100 CD44+CD24+ESA+ cells forming tumors that were histologically indistinguishable from the human tumors from which they originated. The enhanced ability of CD44+CD24+ESA+ pancreatic cancer cells to form tumors was confirmed in an orthotopic pancreatic tail injection model. The CD44+CD24+ESA+ pancreatic cancer cells showed the stem cell properties of self-renewal, the ability to produce differentiated progeny, and increased expression of the developmental signaling molecule sonic hedgehog. Identification of pancreatic cancer stem cells and further elucidation of the signaling pathways that regulate their growth and survival may provide novel therapeutic approaches to treat pancreatic cancer, which is notoriously resistant to standard chemotherapy and radiation. [Cancer Res 2007;67(3):1030–7]
0
Citation3,208
0
Save
0

Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools

Manish Sud et al.Oct 13, 2015
The Metabolomics Workbench, available at www.metabolomicsworkbench.org, is a public repository for metabolomics metadata and experimental data spanning various species and experimental platforms, metabolite standards, metabolite structures, protocols, tutorials, and training material and other educational resources. It provides a computational platform to integrate, analyze, track, deposit and disseminate large volumes of heterogeneous data from a wide variety of metabolomics studies including mass spectrometry (MS) and nuclear magnetic resonance spectrometry (NMR) data spanning over 20 different species covering all the major taxonomic categories including humans and other mammals, plants, insects, invertebrates and microorganisms. Additionally, a number of protocols are provided for a range of metabolite classes, sample types, and both MS and NMR-based studies, along with a metabolite structure database. The metabolites characterized in the studies available on the Metabolomics Workbench are linked to chemical structures in the metabolite structure database to facilitate comparative analysis across studies. The Metabolomics Workbench, part of the data coordinating effort of the National Institute of Health (NIH) Common Fund's Metabolomics Program, provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world.
0

Glucose Transporter Isoforms GLUT1 and GLUT3 Transport Dehydroascorbic Acid

Steven Rumsey et al.Jul 1, 1997
Dehydroascorbic acid (DHA) is rapidly taken up by cells and reduced to ascorbic acid (AA). Using the Xenopus laevis oocyte expression system we examined transport of DHA and AA via glucose transporter isoforms GLUT1–5 and SGLT1. The apparentK m of DHA transport via GLUT1 and GLUT3 was 1.1 ± 0.2 and 1.7 ± 0.3 mm, respectively. High performance liquid chromatography analysis confirmed 100% reduction of DHA to AA within oocytes. GLUT4 transport of DHA was only 2–4-fold above control and transport kinetics could not be calculated. GLUT2, GLUT5, and SGLT1 did not transport DHA and none of the isoforms transported AA. Radiolabeled sugar transport confirmed transporter function and identity of all cDNA clones was confirmed by restriction fragment mapping. GLUT1 and GLUT3 cDNA were further verified by polymerase chain reaction. DHA transport activity in both GLUT1 and GLUT3 was inhibited by 2-deoxyglucose, d-glucose, and 3-O-methylglucose among other hexoses while fructose and l-glucose showed no inhibition. Inhibition by the endofacial inhibitor, cytochalasin B, was non-competitive and inhibition by the exofacial inhibitor, 4,6-O-ethylidene-α-glucose, was competitive. Expressed mutant constructs of GLUT1 and GLUT3 did not transport DHA. DHA and 2-deoxyglucose uptake by Chinese hamster ovary cells overexpressing either GLUT1 or GLUT3 was increased 2–8-fold over control cells. These studies suggest GLUT1 and GLUT3 isoforms are the specific glucose transporter isoforms which mediate DHA transport and subsequent accumulation of AA.
0

Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data

Alla Karnovsky et al.Nov 30, 2011
Metabolomics is a rapidly evolving field that holds promise to provide insights into genotype-phenotype relationships in cancers, diabetes and other complex diseases. One of the major informatics challenges is providing tools that link metabolite data with other types of high-throughput molecular data (e.g. transcriptomics, proteomics), and incorporate prior knowledge of pathways and molecular interactions.We describe a new, substantially redesigned version of our tool Metscape that allows users to enter experimental data for metabolites, genes and pathways and display them in the context of relevant metabolic networks. Metscape 2 uses an internal relational database that integrates data from KEGG and EHMN databases. The new version of the tool allows users to identify enriched pathways from expression profiling data, build and analyze the networks of genes and metabolites, and visualize changes in the gene/metabolite data. We demonstrate the applications of Metscape to annotate molecular pathways for human and mouse metabolites implicated in the pathogenesis of sepsis-induced acute lung injury, for the analysis of gene expression and metabolite data from pancreatic ductal adenocarcinoma, and for identification of the candidate metabolites involved in cancer and inflammation.Metscape is part of the National Institutes of Health-supported National Center for Integrative Biomedical Informatics (NCIBI) suite of tools, freely available at http://metscape.ncibi.org. It can be downloaded from http://cytoscape.org or installed via Cytoscape plugin manager.metscape-help@umich.edu; akarnovs@umich.eduSupplementary data are available at Bioinformatics online.
0
Citation392
0
Save
0

Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6).

Toshiaki Kayano et al.Aug 1, 1990
Two novel facilitative glucose transporter-like cDNAs have been isolated from human small intestine and fetal skeletal muscle cDNA libraries by low stringency cross-hybridization with a fragment of the human erythrocyte/GLUT1 facilitative glucose transporter cDNA. One encodes a 501-amino acid facilitative glucose transporter, designated as the small intestine/GLUT5 isoform, having 41.7, 40.0, 38.7, and 41.6% identity with the previously described human erythrocyte/GLUT1, liver/GLUT2, brain/GLUT3, and muscle-fat/GLUT4 isoforms, respectively. GLUT5 mRNA is expressed at highest levels in small intestine and at much lower levels in kidney, skeletal muscle, and adipose tissue. Expression of in vitro synthesized human GLUT5 mRNA in Xenopus laevis oocytes indicates that the GLUT5 protein is a cytochalasin B-sensitive glucose carrier. The gene encoding the GLUT5 protein is located on the short arm of human chromosome 1. The second facilitative transporter-like cDNA sequence, designated GLUT6, is part of an 11-kilobase transcript that is expressed in all tissues examined. The sequence of a partial-length GLUT6 cDNA having an insert of 3.4 kilobase pairs revealed a region of 1.5 kilobase pairs that has 79.6% identity with the human brain/GLUT3 facilitative glucose transporter cDNA. However, because of the presence of multiple stop codons and frame shifts, this sequence cannot encode a functional glucose transporter protein. The region of facilitative glucose transporter nucleotide sequence homology in the GLUT6 transcript may have arisen by insertion of a reverse-transcribed GLUT3 transcript into the untranslated region of another gene. The GLUT6 gene is located on the long arm of human chromosome 5.
0
Citation387
0
Save
0

Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation*

Isabelle Gerin et al.Aug 24, 2010
The regulation of synthesis, degradation, and distribution of lipids is crucial for homeostasis of organisms and cells. The sterol regulatory element-binding protein (SREBP) transcription factor family is post-translationally activated in situations of reduced lipid abundance and activates numerous genes involved in cholesterol, fatty acid, and phospholipid synthesis. In this study, we provide evidence that the primary transcript of SREBP2 contains an intronic miRNA (miR-33) that reduces cellular cholesterol export via inhibition of translation of the cholesterol export pump ABCA1. Notably, miR-33 also inhibits translation of several transcripts encoding proteins involved in fatty acid β-oxidation including CPT1A, HADHB, and CROT, thereby reducing fatty acid degradation. The genetic locus encoding SREBP2 and miR-33 therefore contains a protein that increases lipid synthesis and a miRNA that prevents export and degradation of newly synthesized lipids. These results add an additional layer of complexity to our understanding of lipid homeostasis and might open possibilities for future therapeutic intervention. The regulation of synthesis, degradation, and distribution of lipids is crucial for homeostasis of organisms and cells. The sterol regulatory element-binding protein (SREBP) transcription factor family is post-translationally activated in situations of reduced lipid abundance and activates numerous genes involved in cholesterol, fatty acid, and phospholipid synthesis. In this study, we provide evidence that the primary transcript of SREBP2 contains an intronic miRNA (miR-33) that reduces cellular cholesterol export via inhibition of translation of the cholesterol export pump ABCA1. Notably, miR-33 also inhibits translation of several transcripts encoding proteins involved in fatty acid β-oxidation including CPT1A, HADHB, and CROT, thereby reducing fatty acid degradation. The genetic locus encoding SREBP2 and miR-33 therefore contains a protein that increases lipid synthesis and a miRNA that prevents export and degradation of newly synthesized lipids. These results add an additional layer of complexity to our understanding of lipid homeostasis and might open possibilities for future therapeutic intervention.
Load More