Abstract Leptospira interrogans are invasive bacteria responsible for leptospirosis, a worldwide zoonosis. They possess two periplasmic endoflagella that allow their motility. L. interrogans are stealth pathogens that escape the innate immune responses of the NOD-like receptors NOD1/2, and the human Toll-like receptor (TLR)4, sensing peptidoglycan and lipopolysaccharide (LPS), respectively. TLR5 is another receptor of bacterial cell wall components, recognizing flagellin subunits. To study the contribution of TLR5 in the host defense against leptospires, we infected WT and TLR5 deficient mice with pathogenic L. interrogans and tracked the infection by in vivo live imaging of bioluminescent bacteria or by q-PCR. We did not identify any protective or inflammatory role of murine TLR5 to control pathogenic Leptospira . Likewise, subsequent in vitro experiments showed that infections with different live strains of L. interrogans and L. biflexa did not trigger TLR5. However, unexpectedly, heat-killed bacteria stimulated human and bovine TLR5, although barely mouse TLR5. Abolition of TLR5 recognition required extensive boiling time of the bacteria or proteinase K treatment, showing an unusual high stability of the leptospiral flagellins. Interestingly, using antimicrobial peptides to destabilize live leptospires, we detected some TLR5 activity, suggesting that TLR5 could participate in the fight against leptospires in humans or cattle. Using different Leptospira strains with mutations in flagellin proteins, we further showed that neither FlaAs nor Fcps participated in the recognition by TLR5, suggesting a role for the FlaBs. These have structural homology to Salmonella FliC, and conserved residues important for TLR5 activation, as shown by in silico analyses. Accordingly, we found that leptospires regulate the expression of FlaB mRNA according to the growth phase in vitro , and that infection with L. interrogans in hamsters and in mice downregulated the expression of the FlaBs but not the FlaAs subunits. Altogether, in contrast to different bacteria that modify their flagellin sequences to escape TLR5 recognition, our study suggests that the peculiar central localization and stability of the FlaB monomers in the periplasmic endoflagella, associated with the downregulation of FlaB subunits in hosts, constitute an efficient strategy of leptospires to escape TLR5 recognition and the immune response.