GW
Guangji Wang
Author with expertise in Molecular Mechanisms of Inflammasome Activation and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(56% Open Access)
Cited by:
821
h-index:
70
/
i10-index:
448
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Extensive Intestinal First-Pass Elimination and Predominant Hepatic Distribution of Berberine Explain Its Low Plasma Levels in Rats

Yitong Liu et al.Jul 15, 2010
Berberine, one of the most commonly used natural products, exhibits a poor plasma concentration-effect relationship whose underlying mechanisms remain largely unclear. This study was designed to test the hypothesis that extensive first-pass elimination and abundant tissue distribution of berberine may be its specific pharmacokinetic properties. For that, four different dosing routes, intragastric, intraduodenal, intraportal, and intravenous, were used to investigate the gastric, intestinal, and hepatic first-pass elimination of berberine. After intragastric dosing, approximately half of berberine ran intact through the gastrointestinal tract and another half was disposed of by the small intestine, leading to an extremely low extent of absolute oral bioavailability in rats (0.36%). Moreover, the major berberine metabolites were identified and quantified in rat enterocyte S9 fractions, portal vein plasma, and intestinal perfusates; plasma concentrations and tissue distribution of berberine and its major metabolites were determined as well. Data indicated that M1, M2 glucuronide, and M3 were the major metabolites generated from the small intestine and that there was a 70-fold increase in the ratio of the area under the concentration-time curve value for berberine (liver versus plasma). We conclude that intestinal first-pass elimination of berberine is the major barrier of its oral bioavailability and that its high extraction and distribution in the liver could be other important factors that lead to its low plasma levels in rats.
0

Flavonoid Apigenin Inhibits Lipopolysaccharide-Induced Inflammatory Response through Multiple Mechanisms in Macrophages

Xiaoxuan Zhang et al.Sep 5, 2014
Apigenin is a non-toxic natural flavonoid that is abundantly present in common fruits and vegetables. It has been reported that apigenin has various beneficial health effects such as anti-inflammation and chemoprevention. Multiple studies have shown that inflammation is an important risk factor for atherosclerosis, diabetes, sepsis, various liver diseases, and other metabolic diseases. Although it has been long realized that apigenin has anti-inflammatory activities, the underlying functional mechanisms are still not fully understood.In the present study, we examined the effect of apigenin on LPS-induced inflammatory response and further elucidated the potential underlying mechanisms in human THP-1-induced macrophages and mouse J774A.1 macrophages. By using the PrimePCR array, we were able to identify the major target genes regulated by apigenin in LPS-mediated immune response. The results indicated that apigenin significantly inhibited LPS-induced production of pro-inflammatory cytokines, such as IL-6, IL-1β, and TNF-α through modulating multiple intracellular signaling pathways in macrophages. Apigenin inhibited LPS-induced IL-1β production by inhibiting caspase-1 activation through the disruption of the NLRP3 inflammasome assembly. Apigenin also prevented LPS-induced IL-6 and IL-1β production by reducing the mRNA stability via inhibiting ERK1/2 activation. In addition, apigenin significantly inhibited TNF-α and IL-1β-induced activation of NF-κB.Apigenin Inhibits LPS-induced Inflammatory Response through multiple mechanisms in macrophages. These results provided important scientific evidences for the potential application of apigenin as a therapeutic agent for inflammatory diseases.
12

Chemoproteomics Maps Glycolytic Targetome in Cancer Cells

Yang Tian et al.Nov 19, 2020
ABSTRACT Hyperactivated glycolysis, favoring uncontrolled growth and metastasis by producing essential metabolic intermediates engaging bioenergetics and biosynthesis, is a metabolic hallmark of most cancer cells. Although sporadic information has revealed glycolytic metabolites also possess non-metabolic function as signaling molecules, it remains largely elusive how these metabolites interact with and functionally regulate their binding targets. Here we introduce a Target Responsive Accessibility Profiling (TRAP) approach that measures ligand binding-induced steric hindrance in protein targets via global profiling accessibility changes in reactive lysines, and mapped 913 target candidates and 2,487 interactions for 10 major glycolytic metabolites in cancer cells via TRAP. The elucidated targetome uncovers diverse regulatory modalities of glycolytic metabolites involving the direct perturbation of carbohydrate metabolism enzymes, intervention of transcriptional control, modulation of proteome-level acetylation and protein complex assemblies. The advantages gained from glycolysis by cancer cells are expanded by discovering lactate as a ligand for an orphan transcriptional regulator TRIM 28 that promotes p53 degradation, and by identifying pyruvate acting against a cell apoptosis inducer trichostatin A via attenuating protein acetylation. Lastly, the inhibition of glycolytic key enzymes led to identify an intrinsically active glycolytic intermediate glyceraldehyde 3-phosphate that elicits its cytotoxicity by engaging with ENO1 and MTHFD1. Collectively, the glycolytic targetome depicted by TRAP constitutes a fertile resource for understanding how glycolysis finely tunes metabolism and signaling in support of cancer cells, and fostering the exploitation of glycolytic targetome as promising nodes for anti-cancer therapeutics development.
12
Citation6
0
Save
0

Apaf-1 Pyroptosome Senses Mitochondrial Permeability Transition

Wanfeng Xu et al.Jan 27, 2020
Caspase-4 directly senses and is activated by cytosolic LPS in conditions of pathogen infection. It is unclear whether and how caspase-4 detects host derived factors for triggering pyroptosis. Here we show that mitochondrial permeability transition (MPT) promotes the assembly of a protein complex comprised of Apaf-1 and caspase-4 (caspase-11 in mice), defined herein as pyroptosome, for the execution of facilitated pyroptosis. MPT induced by bile acids and calcium overload, and specifically by an adenine nucleotide translocator 1 (ANT1) activator, triggered pyroptosome assembly. Different from the direct cleavage of GSDMD by LPS-activated caspase-4, caspase-4 activated in the Apaf-1 pyroptosome proceeds to cleave caspase-3 and thereby gasdermin E (GSDME) to induce pyroptosis. Caspase-11 initiated and GSDME executed pyroptosis underlies cholesteric liver failure. These findings identify Apaf-1 pyroptosome as a pivotal machinery for cells sensing MPT signals and may shed lights on understanding how cells execute pyroptosis under sterile conditions.Highlights eTOC Blurb Persistent mitochondrial permeability transition elicited by bile acids, calcium overload and specifically ANT1 activators drives assembly of Apaf-1-capase-4/11 pyroptosome triggering GSDME dependent pryroptosis.
0

Impact of mesenchymal stem cell size and adhesion modulation on in vivo distribution: insights from quantitative PET imaging

Xin Ji et al.Nov 28, 2024
Abstract Background Successful engraftment and localization of mesenchymal stem cells (MSCs) within target tissues are critical factors influencing their therapeutic efficacy for tissue repair and regeneration. However, the relative contributions of biophysical factors like cell size and adhesion capacity in regulating MSC distribution in vivo remain incompletely understood. Methods Cell adhesion peptides and hanging drop method were used to modify the adhesive capacity and size of MSCs. To quantitatively track the real-time biodistribution of transplanted MSCs with defined size and adhesion profiles in living mice and rats, the non-invasive positron emission tomography (PET) imaging was applied. Results Surface modification with integrin binding peptides like RGD, GFOGER, and HAVDI reduced MSC adhesion capacity in vitro by up to 43.5% without altering cell size, but did not significantly decrease lung entrapment in vivo. In contrast, culturing MSCs as 3D spheroids for 48 h reduced their cell diameter by 34.6% and markedly enhanced their ability to pass through the lungs and migrate to other organs like the liver after intravenous administration. This size-dependent effect on MSC distribution was more pronounced in rats compared to mice, likely due to differences in pulmonary microvessel diameters between species. Conclusion Our findings reveal that cell size is a predominant biophysical regulator of MSC localization in vivo compared to adhesion capacity, providing crucial insights to guide optimization of MSC delivery strategies for enhanced therapeutic efficacy. Graphical abstract
4

AGpr35tuned gut-brain metabolic axis regulates depressive-like behavior

Lingsha Cheng et al.Jun 11, 2023
Abstract Gene-environment interactions shape animal behavior and the susceptibility to neurobehavioral symptoms such as depression. However, little is known about the signaling pathway that integrates genetic and environmental inputs with neurobehavioral outcomes, preventing the development of targeted therapies. Here we report that Gpr35 engages a gut microbe-to-brain metabolic pathway to modulate neuronal plasticity and depressive behavior in mice. Chronic stress decreases gut epithelial Gpr35 , the genetic deletion of which induces despair and social impairment in a microbiome-dependent manner. We identify a dominant role for the imbalance of microbe-derived indole-3-carboxaldehyde (IAld) and indole-3-lactate (ILA) in the behavioral symptoms with Gpr35 deficiency. Mechanistically, these bacterial metabolites counteractively modulate dendritic spine density and synaptic transmission in the nucleus accumbens. Supplementation of IAld, which is similarly decreased in depressive patients, produce anti-depressant effects in mice with stress or gut epithelial Gpr35 deficiency. Together, these findings identify a genetics-shaped gut-brain connection underlying the susceptibility to depression and suggest a microbial metabolite-based therapeutic strategy to genetic predisposition.
Load More