HW
Haodi Wu
Author with expertise in Induction and Differentiation of Pluripotent Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(92% Open Access)
Cited by:
1,998
h-index:
35
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells

Arun Sharma et al.Feb 15, 2017
Tyrosine kinase inhibitors (TKIs), despite their efficacy as anticancer therapeutics, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen U.S. Food and Drug Administration-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a "cardiac safety index" to reflect the cardiotoxicities of existing TKIs. TKIs with low cardiac safety indices exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that vascular endothelial growth factor receptor 2 (VEGFR2)/platelet-derived growth factor receptor (PDGFR)-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. With phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Up-regulating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during cotreatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anticancer TKIs, and the results correlate with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.
0

Screening Drug-Induced Arrhythmia Using Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays

Enrique Navarrete et al.Sep 10, 2013
Background— Drug-induced arrhythmia is one of the most common causes of drug development failure and withdrawal from market. This study tested whether human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) combined with a low-impedance microelectrode array (MEA) system could improve on industry-standard preclinical cardiotoxicity screening methods, identify the effects of well-characterized drugs, and elucidate underlying risk factors for drug-induced arrhythmia. hiPSC-CMs may be advantageous over immortalized cell lines because they possess similar functional characteristics as primary human cardiomyocytes and can be generated in unlimited quantities. Methods and Results— Pharmacological responses of beating embryoid bodies exposed to a comprehensive panel of drugs at 65 to 95 days postinduction were determined. Responses of hiPSC-CMs to drugs were qualitatively and quantitatively consistent with the reported drug effects in literature. Torsadogenic hERG blockers, such as sotalol and quinidine, produced statistically and physiologically significant effects, consistent with patch-clamp studies, on human embryonic stem cell–derived cardiomyocytes hESC-CMs. False-negative and false-positive hERG blockers were identified accurately. Consistent with published studies using animal models, early afterdepolarizations and ectopic beats were observed in 33% and 40% of embryoid bodies treated with sotalol and quinidine, respectively, compared with negligible early afterdepolarizations and ectopic beats in untreated controls. Conclusions— We found that drug-induced arrhythmias can be recapitulated in hiPSC-CMs and documented with low impedance MEA. Our data indicate that the MEA/hiPSC-CM assay is a sensitive, robust, and efficient platform for testing drug effectiveness and for arrhythmia screening. This system may hold great potential for reducing drug development costs and may provide significant advantages over current industry standard assays that use immortalized cell lines or animal models.
0

Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro

Elena Matsa et al.Aug 22, 2016
Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.
0
Citation145
0
Save
0

A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles

Joe Zhang et al.Mar 14, 2019
Highlights•TBX5Clover2 and NKX2-5TagRFP reporter enables purification of 4 cardiac subpopulations•Different cardiac lineages differentiate into specific cardiac cell types•CORIN is a cell-surface marker for the TBX5+NKX2-5+ subpopulation•Lineage-specific cardiomyocyte subtypes can be used for precise drug testingSummaryThe diversity of cardiac lineages contributes to the heterogeneity of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs). Here, we report the generation of a hiPSC TBX5Clover2 and NKX2-5TagRFP double reporter to delineate cardiac lineages and isolate lineage-specific subpopulations. Molecular analyses reveal that four different subpopulations can be isolated based on the differential expression of TBX5 and NKX2-5, TBX5+NKX2-5+, TBX5+NKX2-5−, TBX5−NKX2-5+, and TBX5−NKX2-5−, mimicking the first heart field, epicardial, second heart field, and endothelial lineages, respectively. Genetic and functional characterization indicates that each subpopulation differentiates into specific cardiac cells. We further identify CORIN as a cell-surface marker for isolating the TBX5+NKX2-5+ subpopulation and demonstrate the use of lineage-specific CMs for precise drug testing. We anticipate that this tool will facilitate the investigation of cardiac lineage specification and isolation of specific cardiac subpopulations for drug screening, tissue engineering, and disease modeling.Graphical abstract
0
Citation109
0
Save
8

Tyrosine kinase inhibitors induce mitochondrial dysfunction during cardiomyocyte differentiation through alteration of GATA4-mediated networks

Qing Liu et al.May 5, 2020
SUMMARY Maternal drug exposure during pregnancy increases the risks of developmental cardiotoxicity, leading to congenital heart defects (CHDs). In this study, we used human stem cells as an in-vitro system to interrogate the mechanisms underlying drug-induced toxicity during cardiomyocyte differentiation, including anticancer tyrosine kinase inhibitor (TKI) drugs (imatinib, sunitinib, and vandetanib). H1-ESCs were treated with these drugs at sublethal levels during cardiomyocyte differentiation. We found that early exposure to TKIs during differentiation induced obvious toxic effects in differentiated cardiomyocytes, including disarranged sarcomere structure, interrupted Ca 2+ -handling, and impaired mitochondrial function. As sunitinib exposure showed the most significant developmental cardiotoxicity of all TKIs, we further examine its effect with in-vivo experiments. Maternal sunitinib exposure caused fetal death, bioaccumulation, and histopathologic changes in the neonatal mice. Integrative analysis of both transcriptomic and chromatin accessibility landscapes revealed that TKI-exposure altered GATA4-mediated regulatory network, which included key mitochondrial genes. Overexpression of GATA4 with CRISPR-activation restored morphologies, contraction, and mitochondria function in cardiomyocytes upon TKI exposure early during differentiation. Altogether, our study identified a novel crosstalk mechanism between GATA4 activity and mitochondrial function during cardiomyocyte differentiation, and revealed potential therapeutic approaches for reducing TKI-induced developmental cardiotoxicity for human health. Highlights Early-stage exposure to TKIs induced cardiotoxicity and mitochondrial dysfunction GATA4 transcriptional activity is inhibited by TKIs Network analysis reveals interactions between GATA4 and mitochondrial genes GATA4-overexpression rescues cardiomyocytes and mitochondria from TKI exposure
8
Citation1
0
Save
Load More