IE
Iuliana Ene
Author with expertise in Diagnosis and Management of Fungal Infections
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
667
h-index:
18
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen

Iuliana Ene et al.May 16, 2012
The survival of all microbes depends upon their ability to respond to environmental challenges.To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the effects of alternative carbonsources upon stress resistance largely unexplored.We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses.Similar trends were observed in clinical isolates and other pathogenic Candida species.The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways.Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall.Glucoseand lactate-grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion.Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infections.
0
Paper
Citation284
0
Save
0

Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

Iuliana Ene et al.Jul 29, 2015
The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock.The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock.
0

Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia

Alexander Rosenberg et al.Jun 19, 2018
Abstract Tolerance to antifungal drug concentrations above the minimal inhibitory concentration (MIC) is rarely quantified, and current clinical recommendations suggest it should be ignored. Here, we quantify antifungal tolerance in Candida albicans isolates as the fraction of growth above the MIC, and find that it is distinct from susceptibility/resistance. Instead, tolerance is due to the slow growth of subpopulations of cells that overcome drug stress more efficiently than the rest of the population, and correlates inversely with intracellular drug accumulation. Many adjuvant drugs used in combination with fluconazole, a widely used fungistatic drug, reduce tolerance without affecting resistance. Accordingly, in an invertebrate infection model, adjuvant combination therapy is more effective than fluconazole in treating infections with highly tolerant isolates and does not affect infections with low tolerance isolates. Furthermore, isolates recovered from immunocompetent patients with persistent candidemia display higher tolerance than isolates readily cleared by fluconazole. Thus, tolerance correlates with, and may help predict, patient responses to fluconazole therapy.
0
Citation188
0
Save
0

Clearing the FoG: Antifungal tolerance is a subpopulation effect that is distinct from resistance and is associated with persistent candidemia

Alexander Rosenberg et al.Oct 20, 2017
Abstract Drug susceptibility, defined by the minimal inhibitory concentration (MIC), often does not predict whether fungal infections will respond to therapy in the clinic. Tolerance at supra-MIC antifungal drug concentrations is rarely quantified and current clinical recommendations suggest it be ignored. Here, we measured and characterized drug-response variables that could influence the outcomes of fungal infections and be generalizable across major clades of Candida albicans , one of the most frequently isolated human fungal pathogens. We quantified antifungal tolerance as the fraction of growth (FoG) above the MIC and found that it is clearly distinct from susceptibility/resistance measured as MIC. Instead, tolerance is due to the slow growth of subpopulations of cells that overcome drug stress more efficiently than the rest of the population, and correlates inversely with the accumulation of intracellular drug. Importantly, many adjuvant drugs used together with fluconazole, a fungistatic drug, reduce tolerance without affecting resistance. These include inhibitors of major stress response hubs such as Hsp90, calcineurin, PKC1 and TOR. Accordingly, in an invertebrate infection model, adjuvant combination therapy was significantly more effective than fluconazole alone in treating highly tolerant isolates and did not improve the treatment of isolates with low tolerance levels. Furthermore, isolates recovered from immunocompetent patients with persistent candidemia displayed significantly higher tolerance than isolates that were readily cleared by fluconazole. Thus, tolerance correlates with the response to fluconazole therapy in patients and may help predict whether infections will respond to fluconazole alone. Similarly, measuring tolerance may provide a useful clinical parameter for choosing appropriate therapeutic strategies to overcome persistent clinical candidemia.
0
Citation2
0
Save
22

Coregulation of extracellular vesicle production and fluconazole susceptibility inCryptococcus neoformans

Juliana Rizzo et al.Jan 30, 2023
ABSTRACT Resistance to fluconazole (FLC), the most widely used antifungal drug, is typically achieved by altering the azole drug target and/or drug efflux pumps. Recent reports have suggested a link between vesicular trafficking and antifungal resistance. Here, we identified novel Cryptococcus neoformans regulators of extracellular vesicle (EV) biogenesis that impact FLC resistance. In particular, the transcription factor Hap2 does not affect the expression of the drug target or efflux pumps, yet it impacts the cellular sterol profile. Subinhibitory FLC concentrations also downregulate EV production. Moreover, in vitro spontaneous FLC-resistant colonies showed altered EV production, and the acquisition of FLC resistance was associated with decreased EV production in clinical isolates. Finally, the reversion of FLC resistance was associated with increased EV production. These data suggest a model in which fungal cells can regulate EV production in place of regulating the drug target gene expression as a first line of defense against antifungal assault in this fungal pathogen. IMPORTANCE Extracellular vesicles (EVs) are membrane-enveloped particles that are released by cells into the extracellular space. Fungal EVs can mediate community interactions and biofilm formation but thier functions remain poorly understood. Here, we report the identification of the first regulators of EV production in the major fungal pathogen Cryptococcus neoformans. Surprisingly, we uncover a novel role of EVs in modulating antifungal drug resistance. Disruption of EV production was associated with altered lipid composition and changes in fluconazole susceptibility. Spontaneous azole-resistant mutants were deficient in EV production, while loss of resistance restored initial EV production levels. These findings were recapitulated in C. neoformans clinical isolates, indicating that azole resistance and EV production are coregulated in diverse strains. Our study reveals a new mechanism of drug resistance in which cells adapt to azole stress by modulating EV production.
22
Citation1
0
Save
9

Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract

Liam McDonough et al.Jun 27, 2021
ABSTRACT Candida albicans is a pathobiont that colonizes multiple niches in the body including the gastrointestinal (GI) tract, but is also responsible for both mucosal and systemic infections. Despite its prevalence as a human commensal, the murine GI tract is generally refractory to colonization with the C. albicans reference isolate SC5314. Here, we identify two C. albicans isolates, 529L and CHN1, that stably colonize the murine GI tract in three different animal facilities under conditions where SC5314 is lost from this niche. Analysis of the bacterial microbiota did not show notable differences between mice colonized with the three C. albicans strains. We compared the genotypes and phenotypes of these three strains and identified thousands of SNPs and multiple phenotypic differences, including their ability to grow and filament in response to nutritional cues. Despite striking filamentation differences under laboratory conditions, however, analysis of cell morphology in the GI tract revealed that the three isolates exhibited similar filamentation properties in this in vivo niche. Notably, we found that SC5314 is more sensitive to the antimicrobial peptide CRAMP, and the use of CRAMP-deficient mice increased the ability of SC5314 to colonize the GI tract relative to CHN1 and 529L. These studies provide new insights into how strain-specific differences impact C. albicans traits in the host and advance CHN1 and 529L as relevant strains to study C. albicans pathobiology in its natural host niche. IMPORTANCE Understanding how fungi colonize the GI tract is increasingly recognized as highly relevant to human health. The animal models used to study Candida albicans commensalism commonly rely on altering the host microbiome (via antibiotic treatment or defined diets) to establish successful GI colonization by the C. albicans reference isolate SC5314. Here, we characterize two C. albicans isolates that can colonize the murine GI tract without antibiotic treatment and can therefore be used as tools for studying fungal commensalism. Importantly, experiments were replicated in three different animal facilities and utilized three different mouse strains. Differential colonization between fungal isolates was not associated with alterations in the bacterial microbiome but rather with distinct responses to CRAMP, a host antimicrobial peptide. This work emphasizes the importance of C. albicans intra-species variation as well as host anti-microbial defense mechanisms in defining commensal interactions.
9
Citation1
0
Save
1

Small Molecules Restore Azole Activity Against Drug-Tolerant and Drug-ResistantCandidaIsolates

Philip Alabi et al.Mar 31, 2022
ABSTRACT Each year, fungi cause more than 1.5 billion infections worldwide and have a devastating impact on human health, particularly in immunocompromised individuals or patients in intensive care units. The limited antifungal arsenal and emerging multidrug resistant species necessitate the development of new therapies. One strategy for combating drug resistant pathogens is the administration of molecules that restore fungal susceptibility to approved drugs. Accordingly, we carried out a screen to identify small molecules that could restore the susceptibility of pathogenic Candida species to azole antifungals. This screening effort led to the discovery of novel 1,4-benzodiazepines that restore fluconazole susceptibility in resistant isolates of Candida albicans , as evidenced by 100-1000-fold potentiation of fluconazole activity. This potentiation effect was also observed in azole-tolerant strains of C. albicans and in other pathogenic Candida species. The 1,4-benzodiazepines selectively potentiated different azoles, but not other approved antifungals. A remarkable feature of the potentiation was that the combination of the compounds with fluconazole was fungicidal, whereas fluconazole alone is fungistatic. Interestingly, the potentiators were not toxic to C. albicans in the absence of fluconazole, but inhibited virulence-associated filamentation of the fungus. We found that the combination of the potentiators and fluconazole significantly enhanced host survival in a Galleria mellonella model of systemic fungal infection. Taken together, these observations validate a strategy wherein small molecules can restore the activity of highly used anti-infectives that have lost potency. IMPORTANCE In the last decade, we have been witnessing a higher incidence of fungal infections, due to an expansion of the fungal species capable of causing disease ( e.g ., Candida auris ), as well as increased antifungal drug resistance. Among human fungal pathogens, Candida species are a leading cause of invasive infections and are associated with high mortality rates. Infections by these pathogens are commonly treated with azole antifungals, yet the expansion of drug-resistant isolates have reduced their clinical utility. In this work, we describe the discovery and characterization of small molecules that potentiate fluconazole and restore the susceptibility of azole-resistant and azole-tolerant Candida isolates. Interestingly, the potentiating 1,4-benzodiazepines were not toxic to fungal cells but inhibited their virulence-associated filamentous growth. Furthermore, combinations of the potentiators and fluconazole decreased fungal burdens and enhanced host survival in a Galleria mellonella model of systemic fungal infections. Accordingly, we propose the use of novel antifungal potentiators as a powerful strategy for addressing the growing resistance of fungi to clinically approved drugs.
0

An IL-17-DUOX2 axis controls gastrointestinal colonization byCandida albicans

Pallavi Kakade et al.Aug 19, 2024
Candida albicans is a ubiquitous fungus in the human gut microbiome as well as a prevalent cause of opportunistic mucosal and systemic disease. There is currently little understanding, however, as to how crosstalk between C. albicans and the host regulates colonization of this key niche. Here, we performed expression profiling on ileal and colonic tissues in germ-free mice colonized with C. albicans to define the global response to this fungus. We reveal that Duox2 and Duoxa2 , encoding dual NADPH oxidase activity, are upregulated in both the ileum and colon, and that induction requires the C. albicans yeast-hyphal transition and the hyphal-specific toxin candidalysin. Hosts lacking the IL-17 receptor failed to upregulate Duox2/Duoxa2 in response to C. albicans , while addition of IL-17A to colonoids induced these genes together with the concomitant production of hydrogen peroxide. To directly define the role of Duox2/Duoxa2 in fungal colonization, antibiotic-treated mice lacking intestinal DUOX2 activity were evaluated for C. albicans colonization and host responses. Surprisingly, loss of DUOX2 function reduced fungal colonization at extended time points (>17 days colonization) and increased the proportion of hyphal cells in the gut. IL-17A levels were also elevated in C. albicans -colonized mice lacking functional DUOX2 highlighting cross-regulation between this cytokine and DUOX2. Together, these experiments reveal novel links between fungal cells, candidalysin toxin and the host IL-17-DUOX2 axis, and that a complex interplay between these factors regulates C. albicans filamentation and colonization in the gut.
0

Step-wise evolution of azole resistance through copy number variation followed byKSR1loss of heterozygosity inCandida albicans

Pétra Zande et al.Mar 5, 2024
Abstract Antimicrobial drug resistance poses a global health threat, requiring a deeper understanding of the evolutionary processes that lead to its emergence in pathogens. Complex evolutionary dynamics involve multiple mutations that can result in cooperative or competitive (clonal interference) effects. Candida albicans , a major fungal pathogen, displays high rates of copy number variation (CNV) and loss of heterozygosity (LOH). CNV and LOH events involve large numbers of genes and could synergize during evolutionary adaptation. Understanding the contributions of CNV and LOH to antifungal drug adaptation is challenging, especially in the context of whole-population genome sequencing. Here, we document the sequential evolution of fluconazole tolerance and then resistance in a C. albicans isolate involving an initial CNV on chromosome 4, followed by an LOH on chromosome R that involves KSR1 . Similar LOH events involving KSR1, which encodes a reductase involved in sphingolipid biosynthesis, were also detected in independently evolved fluconazole resistant isolates. We dissect the specific KSR1 codons that affect fluconazole resistance and tolerance. The combination of the chromosome 4 CNV and KSR1 LOH results in a >500-fold increase in azole resistance, illustrating a compelling example of rapid, yet step-wise, interplay between CNV and LOH in drug resistance evolution.