DD
Daniel Duzdevich
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
2
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Freeze-thaw Cycles Enable a Prebiotically Plausible and Continuous Pathway from Nucleotide Activation to Nonenzymatic RNA Copying

Stephanie Zhang et al.Sep 7, 2021
Abstract Nonenzymatic template-directed RNA copying using chemically activated nucleotides is thought to have played a key role in the emergence of genetic information on the early Earth. A longstanding question concerns the number and nature of different environments that might have been necessary to enable all of the steps from nucleotide synthesis to RNA replication. Here we explore three sequential steps from this overall pathway: nucleotide activation, synthesis of imidazolium-bridged dinucleotides, and template-directed primer extension. We find that all three steps can take place in one reaction mixture, under conditions of multiple freeze-thaw cycles. Recent experiments have demonstrated a potentially prebiotic methyl isocyanide-based nucleotide activation chemistry. Unfortunately, the original version of this approach is incompatible with nonenzymatic RNA copying because the high required concentration of the imidazole activating group prevents the accumulation of the essential imidazolium-bridged dinucleotide needed for primer extension. Here we report that ice eutectic phase conditions facilitate not only the methyl isocyanide-based activation of ribonucleotide 5′-monophosphates with stoichiometric 2-aminoimidazole, but also the subsequent conversion of these activated mononucleotides into imidazolium-bridged dinucleotides. Furthermore, this one pot approach is compatible with template-directed primer extension in the same reaction mixture. Our results suggest that the simple and common environmental fluctuation of freeze-thaw cycles could have played an important role in prebiotic nucleotide activation and nonenzymatic RNA copying. Significance Statement The replication of RNA without the aid of evolved enzymes may have enabled the inheritance of useful molecular functions during the origin of life. Several key steps on the path to RNA replication have been studied in isolation, including chemical nucleotide activation, synthesis of a key reactive intermediate, and nonenzymatic RNA copying. Here we report a prebiotically plausible scenario under which these reactions can happen together under mutually compatible conditions. Thus, this pathway could potentially have operated in nature without the complicating requirement for exchange of materials between distinct environments.
1
Citation2
0
Save
0

Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension

Daniel Duzdevich et al.Jan 4, 2021
ABSTRACT Nonenzymatic copying of RNA templates with activated nucleotides is a useful model for studying the emergence of heredity at the origin of life. Previous experiments with defined-sequence templates have pointed to the poor fidelity of primer extension as a major problem. Here we examine the origin of mismatches during primer extension on random templates in the simultaneous presence of all four 2-aminoimidazole-activated nucleotides. Using a deep sequencing approach that reports on millions of individual template-product pairs, we are able to examine correct and incorrect polymerization as a function of sequence context. We have previously shown that the predominant pathway for primer extension involves reaction with imidazolium-bridged dinucleotides, which form spontaneously by the reaction of two mononucleotides with each other. We now show that the sequences of correctly paired products reveal patterns that are expected from the bridged dinucleotide mechanism, whereas those associated with mismatches are consistent with direct reaction of the primer with activated mononucleotides. Increasing the ratio of bridged dinucleotides to activated mononucleotides, either by using purified components or by using isocyanide-based activation chemistry, reduces the error frequency. Our results point to testable strategies for the accurate nonenzymatic copying of arbitrary RNA sequences.
0

Overcoming nucleotide bias in the nonenzymatic copying of RNA templates.

Daniel Duzdevich et al.Sep 3, 2024
The RNA World hypothesis posits that RNA was the molecule of both heredity and function during the emergence of life. This hypothesis implies that RNA templates can be copied, and ultimately replicated, without the catalytic aid of evolved enzymes. A major problem with nonenzymatic templated polymerization has been the very poor copying of sequences containing rA and rU. Here we overcome that problem by using a prebiotically plausible mixture of RNA mononucleotides and random-sequence oligonucleotides, all activated by methyl isocyanide chemistry, that direct the uniform copying of arbitrary-sequence templates, including those harboring rA and rU. We further show that the use of this mixture in copying reactions suppresses copying errors while also generating a more uniform distribution of mismatches than observed for simpler systems. We find that oligonucleotide competition for template binding sites, oligonucleotide ligation, and the template binding properties of reactant intermediates work together to reduce product sequence bias and errors. Finally, we show that iterative cycling of the activation chemistry and templated polymerization improves the yield of random-sequence products. These results for random-sequence template copying are a significant advance in the pursuit of nonenzymatic RNA replication.
4

Solid-State Single-Molecule Sensing with the Electronic Life-detection Instrument for Enceladus/Europa (ELIE)

Christopher Carr et al.Sep 2, 2022
Abstract Growing evidence of the potential habitability of Ocean Worlds across our Solar System is motivating the advancement of technologies capable of detecting life as we know it – sharing a common ancestry or common physicochemical origin to life on Earth – or don’t know it, representing a distinct genesis event of life quite different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of- principle in a laboratory environment, we demonstrate single-molecule detection of the amino acid L-proline at a 10 µM concentration in a compact system. Based on ELIE’s solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO–LUMO gap (energy difference between a molecule’s highest energy occupied molecular orbital and lowest energy unoccupied molecular orbital) as a novel approach to measure amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived (-amino acids in order to reduce false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in the plume, surface, or subsurface of ice moons such as Enceladus or Europa. One Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don’t.
0

Nanogap Solid-State Single-Molecule Detection at Mars, Europa, and Microgravity Conditions

José Ramírez-Colón et al.Mar 2, 2024
Abstract Solid-state nanogap systems are an emerging technology for in-situ life detection due to their single-molecule resolution of a wide range of biomolecules, including amino acids and informational polymers, at the parts per billion to trillion level. By targeting the abundance distributions of organic molecules, this technology is a candidate for detecting ancient and extant life and discriminating between biotic and abiotic organics on future planetary missions to Mars and icy moons such as Enceladus and Europa. A benchtop system developed at Osaka University has a proven ability to detect and discriminate among single amino acids, RNA, and DNA using nanogap chips. The Electronic Life-detection Instrument for Enceladus/Europa (ELIE) prototype was subsequently developed to make this technology viable for space instrumentation through the simplification of electronics, reduction of size and weight, and automation of gap formation. Initial ground testing using a manually formed nanogap with the first ELIE prototype detected the amino acid L-proline. However, this manual adjustment approach posed limitations in maintaining a consistent gap size. To address this challenge, we integrated an automated piezo actuator to enable real-time gap control, permitting single-molecule identification of a target amino acid, L-proline, under reduced gravity ( g ), including Mars ( g = 0.378), Europa or Lunar ( g = 0.166), and microgravity conditions ( g = 0.03-0.06), as validated through parabolic flight testing. Power supply noise and experimental constraints of the experiment design limited data collection to short segments of good-quality data. Nevertheless, the subsequent analysis of detected events within these segments revealed a consistent system performance and a controlled gap size across the different accelerations. This finding highlights the system’s resilience to physical vibrations. Future goals are to progress the instrument towards technology readiness level 4 with further reductions of size and mass, lower noise, and additional system automation. With further development, ELIE has the potential to be an autonomous and sensitive single-molecule detection instrument for deployment throughout the solar system.
0

Overcoming nucleotide bias in the nonenzymatic copying of RNA templates

Daniel Duzdevich et al.Nov 12, 2024
Abstract The RNA World hypothesis posits that RNA was the molecule of both heredity and function during the emergence of life. This hypothesis implies that RNA templates can be copied, and ultimately replicated, without the catalytic aid of evolved enzymes. A major problem with nonenzymatic template-directed polymerization has been the very poor copying of sequences containing rA and rU. Here, we overcome that problem by using a prebiotically plausible mixture of RNA mononucleotides and random-sequence oligonucleotides, all activated by methyl isocyanide chemistry, that direct the uniform copying of arbitrary-sequence templates, including those harboring rA and rU. We further show that the use of this mixture in copying reactions suppresses copying errors while also generating a more uniform distribution of mismatches than observed for simpler systems. We find that oligonucleotide competition for template binding sites, oligonucleotide ligation and the template binding properties of reactant intermediates work together to reduce product sequence bias and errors. Finally, we show that iterative cycling of templated polymerization and activation chemistry improves the yields of random-sequence products. These results for random-sequence template copying are a significant advance in the pursuit of nonenzymatic RNA replication.