ØS
Øystein Sørensen
Author with expertise in Analysis of Brain Functional Connectivity Networks
University of Oslo, Oslo University Hospital, National University of Singapore
+ 5 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
22
(73% Open Access)
Cited by:
12
h-index:
19
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
31

Individual variations in “Brain age” relate to early life factors more than to longitudinal brain change

Dídac Vidal-Piñeiro et al.Oct 24, 2023
+28
S
Y
D
Abstract Brain age is a widely used index for quantifying individuals’ brain health as deviation from a normative brain aging trajectory. Higher than expected brain age is thought partially to reflect above-average rate of brain aging. We explicitly tested this assumption in two large datasets and found no association between cross-sectional brain age and steeper brain decline measured longitudinally. Rather, brain age in adulthood was associated with early-life influences indexed by birth weight and polygenic scores. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.
31
Citation7
0
Save
191

Sleep duration and brain structure – phenotypic associations and genotypic covariance

Anders Fjell et al.Oct 24, 2023
+21
Y
Ø
A
Abstract The question of how much sleep is best for the brain attracts scientific and public interest, and there is concern that insuficient sleep leads to poorer brain health. However, it is unknown how much sleep is sufficient and how much is too much. We analyzed 51,295 brain magnetic resonnance images from 47,039 participants, and calculated the self-reported sleep duration associated with the largest regional volumes and smallest ventricles relative to intracranial volume (ICV) and thickest cortex. 6.8 hours of sleep was associated with the most favorable brain outcome overall. Critical values, defined by 95% confidence intervals, were 5.7 and 7.9 hours. There was regional variation, with for instance the hippocampus showing largest volume at 6.3 hours. Moderately long sleep (> 8 hours) was more strongly associated with smaller relative volumes, thinner cortex and larger ventricles than even very short sleep (< 5 hours), but effect sizes were modest. People with larger ICV reported longer sleep (7.5 hours), so not correcting for ICV yielded longer durations associated with maximal volume. Controlling for socioeconomic status, body mass index and depression symptoms did not alter the associations. Genetic analyses showed that genes related to longer sleep in short sleepers were related to shorter sleep in long sleepers. This may indicate a genetically controlled homeostatic regulation of sleep duration. Mendelian randomization analyses did not suggest sleep duration to have a causal impact on brain structure in the analyzed datasets. The findings challenge the notion that habitual short sleep is negatively related to brain structure. Significance statement According to consensus recommendations, adults should sleep between 7 and 9 hours to optimize their health. We found that sleeping less than the recommended amount was associated with greater regional brain volumes relative to intracranial volume, and very short sleep was only weakly related to smaller volumes. Genetic analyses did not show causal effects of sleep duration on brain structure. Taken together, the results suggest that habitual short sleep is not an important contributor to lower brain volumes in adults on a group level, and that large individual dfferences in sleep need likely exist.
0

Multilevel Semiparametric Latent Variable Modeling in R with “galamm”

Øystein SørensenSep 12, 2024
Ø
We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.
15

A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression

Salim Ghannoum et al.Oct 24, 2023
+10
M
D
S
Abstract Few studies so far have investigated the impact of different cell migration traits on tumor progression. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the migration and invasion traits of Giantin depleted cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.
16

Back to the future: omnipresence of fetal influence on the human brain through the lifespan

Kristine Walhovd et al.Oct 24, 2023
+11
I
S
K
Abstract Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and life-long positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4-82 years of age, w/ 386 monozygotic twins, followed for up to 8.3 years w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.
0

What underlies exceptional memory function in older age? No evidence for aging-specific relationships to hippocampal atrophy and retrieval activity

Anders Fjell et al.May 28, 2024
+5
I
M
A
Abstract Some older adults show superior memory performance compared to same-age peers, even performing on par with young participants. These are often referred to as SuperAgers . It is not known whether their superior memory function is caused by special features of their brains in aging, or whether superior memory has the same brain foundation throughout adult life. To address this, we measured hippocampal volume and atrophy, microstructural integrity by diffusion tensor imaging, and activity during an episodic memory encoding and retrieval task, in 277 cognitively healthy adults (age 20.1-81.5 years at baseline, mean 49.2 years). For quantification of hippocampal atrophy, all participants had repeated MRIs, from two to seven examinations, covering a mean of 9.3 years between first and last scan (2.5-17.3 years). 15.7% of the participants above 60 years had episodic memory scores above the mean of the young and middle-aged participants and were classified as SuperAgers. We found that superior memory in older adults was associated with higher retrieval activity in the anterior hippocampus and less hippocampal atrophy. However, there were no significant age-interactions, suggesting that the relationships reflected stable correlates of superior memory function. Although SuperAgers had superior memory compared to their same-age peers, they still performed worse than the best-performing young participants. Further, age-memory performance curves across the full age-range were similar for participants with superior memory performance compared to those with normal and low performance. These trajectories were based on cross-sectional data, but do not indicate preserved memory among the superior functioning older adults. In conclusion, the current results confirm that aspects of hippocampal structure and function are related to superior memory across age, without evidence to suggest that SuperAgers have special features compared to their younger counterparts.
0

Self-reported sleep relates to hippocampal atrophy across the adult lifespan - results from the Lifebrain consortium

Anders Fjell et al.May 7, 2020
+24
I
Ø
A
Background: Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan. Methods: Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18-90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants, covering up to 11 years. Cross-sectional analyses were repeated in a sample of 21390 participants from the UK Biobank. Results: The relationship between self-reported sleep and age differed across sleep items. Sleep duration, efficiency, problems, and use of medication worsened monotonously with age, whereas subjective sleep quality, sleep latency, and daytime tiredness improved. Women reported worse sleep in general than men, but the relationship to age was similar. No cross-sectional sleep - hippocampal volume relationships was found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing on average 0.22% greater annual loss than low scorers. Simulations showed that longitudinal effects were too small to be detected as age-interactions in cross-sectional analyses. Conclusions: Worse self-reported sleep is associated with higher rates of hippocampal decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation.
54

Education and income show heterogeneous relationships to lifespan brain and cognitive differences across European and US cohorts

Kristine Walhovd et al.Oct 24, 2023
+26
Y
A
K
Abstract Socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. Here we show that relationships between SES, brain volumes and general cognitive ability differ significantly across European and US cohorts (4-97 years, N ≈ 500,000; 54,000 with brain imaging). Education was positively related to intracranial (ICV) and total brain gray matter (GM) volume. Income was related to ICV, but not GM. Relationships varied significantly across samples, and SES was more strongly related to brain and cognition in US than European cohorts. Differences in neuroanatomical volumes explained part of the SES-cognition relationships. SES was more strongly related to ICV than to GM, implying that SES-cognition relations in adulthood are less likely grounded in neuroprotective effects on GM volume in aging. Rather, a relationship may be established early in life. The findings underscore that SES has no uniform association with, or impact on, brain and cognition.
0

Genetic risk for Alzheimer`s disease predicts hippocampal volume through the lifespan

Kristine Walhovd et al.May 7, 2020
+9
Ø
A
K
INTRODUCTION: It is unknown whether genetic risk for Alzheimer`s disease (AD) represents a stable influence on the brain from early in life, or whether effects are age-dependent. It is critical to characterize the effects of genetic risk factors on the primary neural substrate of AD, the hippocampus, throughout life. METHODS: Relations of polygenic risk score (PGS) for AD, including variants in Apolipoprotein E (APOE) with hippocampal volume and its change were assessed in a healthy longitudinal lifespan sample (n = 1181, 4-95 years), followed for up to 11 years with a total of 2690 MRI scans. RESULTS: AD-PGS showed a significant negative effect on hippocampal volume. Offset effects of AD-PGS and APOE ϵ4 were present in hippocampal development, and interactions between age and genetic risk on volume change were not consistently observed. DISCUSSION: Endophenotypic manifestation of polygenic risk for AD may be seen across the lifespan in healthy persons.
17

Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s Disease

James Roe et al.Oct 24, 2023
+15
Ø
D
J
Abstract Normal aging and Alzheimer’s Disease (AD) are accompanied by large-scale alterations in brain organization that undermine brain function. Although hemispheric asymmetry is a global organizing feature of cortex thought to promote brain efficiency, current descriptions of cortical thinning in aging and AD have largely overlooked cortical asymmetry. Consequently, the foundational question of whether and where the cerebral hemispheres change at different rates in aging and AD remains open. First, applying vertex-wise data-driven clustering in a longitudinal discovery sample (aged 20-89; 2577 observations; 1851 longitudinal) we identified cortical regions exhibiting similar age-trajectories of asymmetry across the adult lifespan. Next, we sought replication in 4 independent longitudinal aging cohorts. We show that higher-order regions of cortex that exhibit pronounced asymmetry at age ~20 also show asymmetry change in aging. Results revealed that both leftward and rightward asymmetry is progressively lost on a similar time-scale across adult life. Hence, faster thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This simple organizational principle showed high consistency across multiple aging cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Finally, we show that regions exhibiting gradual asymmetry-loss over healthy adult life exhibit faster asymmetry-change in AD. Overall, our results suggest a system-wide breakdown in the adaptive asymmetric organization of cortex across adult life which is further accelerated in AD, and may implicate thickness asymmetry as a viable marker for declining hemispheric specialization in aging and AD. Significance The brain becomes progressively disorganized with age, and brain alterations accelerated in Alzheimer’s disease may occur gradually over the lifespan. Although hemispheric asymmetry aids efficient network organization, efforts to identify structural markers of age-related decline have largely overlooked cortical asymmetry. Here we show the hemisphere that is thicker when younger, thins faster. This leads to progressive system-wide loss of regional thickness asymmetry across life. In multiple aging cohorts, asymmetry-loss showed high reproducibility topologically across cortex and similar timing-of-change in aging. Asymmetry-change was further accelerated in AD. Our findings uncover a new principle of brain aging – thicker homotopic cortex thins faster – and suggest we may have unveiled a structural marker for a widely-hypothesized decline in hemispheric specialization in aging and AD.
Load More