KW
Kristine Walhovd
Author with expertise in Analysis of Brain Functional Connectivity Networks
University of Oslo, Oslo University Hospital, Lifespan
+ 7 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
35
(63% Open Access)
Cited by:
8
h-index:
75
/
i10-index:
209
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
191

Sleep duration and brain structure – phenotypic associations and genotypic covariance

Anders Fjell et al.Oct 24, 2023
+21
Y
Ø
A
Abstract The question of how much sleep is best for the brain attracts scientific and public interest, and there is concern that insuficient sleep leads to poorer brain health. However, it is unknown how much sleep is sufficient and how much is too much. We analyzed 51,295 brain magnetic resonnance images from 47,039 participants, and calculated the self-reported sleep duration associated with the largest regional volumes and smallest ventricles relative to intracranial volume (ICV) and thickest cortex. 6.8 hours of sleep was associated with the most favorable brain outcome overall. Critical values, defined by 95% confidence intervals, were 5.7 and 7.9 hours. There was regional variation, with for instance the hippocampus showing largest volume at 6.3 hours. Moderately long sleep (> 8 hours) was more strongly associated with smaller relative volumes, thinner cortex and larger ventricles than even very short sleep (< 5 hours), but effect sizes were modest. People with larger ICV reported longer sleep (7.5 hours), so not correcting for ICV yielded longer durations associated with maximal volume. Controlling for socioeconomic status, body mass index and depression symptoms did not alter the associations. Genetic analyses showed that genes related to longer sleep in short sleepers were related to shorter sleep in long sleepers. This may indicate a genetically controlled homeostatic regulation of sleep duration. Mendelian randomization analyses did not suggest sleep duration to have a causal impact on brain structure in the analyzed datasets. The findings challenge the notion that habitual short sleep is negatively related to brain structure. Significance statement According to consensus recommendations, adults should sleep between 7 and 9 hours to optimize their health. We found that sleeping less than the recommended amount was associated with greater regional brain volumes relative to intracranial volume, and very short sleep was only weakly related to smaller volumes. Genetic analyses did not show causal effects of sleep duration on brain structure. Taken together, the results suggest that habitual short sleep is not an important contributor to lower brain volumes in adults on a group level, and that large individual dfferences in sleep need likely exist.
3

A robust intensity distribution alignment for harmonization of T1w intensity values

Donatas Sederevičius et al.Oct 24, 2023
+3
K
A
D
Abstract Variations in image intensities between magnetic resonance imaging (MRI) acquisitions affect the subsequent image processing and its derived outcomes. Therefore, it is necessary to normalize images of different scanners/acquisitions, especially for longitudinal studies where a change of scanner or pulse sequence often happens. Here, we propose a robust intensity distribution alignment (RIDA) method to remove between-scan effects. The method is based on MRI T1w images acquired in close succession and robustly aligns two cumulative distribution functions (CDF) of voxel intensities to improve image-derived outcomes of a range of subcortical brain structures with different acquisition parameters. We compare RIDA with the other image harmonization methods: mica and RAVEL. We study three intra-scanner and three inter-scanner protocol variations among the same 20 participants scanned with Siemens 1.5T Avanto, 3T Skyra, and 3T Prisma scanners on the same day and use image-derived volumetric outputs from the Sequence Adaptive Multimodal Segmentation (SAMSEG) method. We find that CDF-based intensity harmonization ( mica and RIDA) significantly reduces intensity differences, improves consistency in volume quantification, and increases spatial overlap between two images acquired in close succession. The improvements are most considerable if the intensity normalization is based on subcortical structures only (RIDA), excluding cortical regions, instead of the whole brain. However, the effect of the corrections varies considerably as a function of the compared scanners and sequences. In conclusion, the RIDA scaneffect normalization improves the consistency of image-derived measures, but its performance depends on several factors.
3
Paper
Citation2
0
Save
37

Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex

James Roe et al.Oct 24, 2023
+10
I
D
J
Abstract Cortical asymmetry is a ubiquitous feature of brain organization that is subtly altered in some neurodevelopmental disorders, yet we lack knowledge of how its development proceeds across life in health. Achieving consensus on the precise cortical asymmetries in humans is necessary to uncover the genetic and later influences that shape them, such as age. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in 7 datasets and chart asymmetry trajectories longitudinally across life (4-89 years; observations = 3937; 70% longitudinal). We find replicable asymmetry interrelationships, heritability maps, and test asymmetry associations in large-scale data. Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in childhood and peaks in early adulthood. Areal asymmetry correlates phenotypically and genetically in specific regions, and is low-moderately heritable (max h 2 SNP ∼19%). In contrast, thickness asymmetry is globally interrelated across the cortex in a pattern suggesting highly left-lateralized individuals tend towards left-lateralization also in population-level right-asymmetric regions (and vice versa), and exhibits low or absent heritability. We find less areal asymmetry in the most consistently lateralized region in humans associates with subtly lower cognitive ability, and confirm small handedness and sex effects. Results suggest areal asymmetry is developmentally stable and arises in early life through genetic but mainly subject-specific stochastic effects, whereas childhood developmental growth shapes thickness asymmetry and may lead to directional variability of global thickness lateralization in the population.
37
Citation2
0
Save
0

Age-related differences in functional asymmetry during memory retrieval revisited: no evidence for contralateral over-activation or compensation

James Roe et al.May 7, 2020
+5
M
D
J
Abstract Brain asymmetry is inherent to cognitive processing and seems to reflect processing efficiency. Lower frontal asymmetry is often observed in older adults during memory retrieval, yet it is unclear whether lower asymmetry implies an age-related increase in contralateral recruitment, whether less asymmetry reflects compensation, is limited to frontal regions, or predicts neurocognitive stability or decline. We assessed age-differences in asymmetry across the entire cerebral cortex, using fMRI data from 89 young and 76 older adults during successful retrieval, and surface-based methods that allowed direct homotopic comparison of activity between hemispheres. An extensive left-asymmetric network facilitated retrieval in both young and older adults, whereas diverse frontal and parietal regions exhibited lower asymmetry in older adults. However, lower asymmetry was not associated with age-related increases in contralateral recruitment, but primarily reflected either less deactivation in contralateral regions reliably signalling retrieval failure in the young, or lower recruitment of the dominant hemisphere—suggesting that functional deficits may drive lower asymmetry in older brains, not compensatory activity. Lower asymmetry neither predicted current memory performance, nor the extent of memory change across the preceding ∼8 years in older adults. Together, these findings are inconsistent with a compensation account for lower asymmetry during retrieval and aging.
0
Citation1
0
Save
0

Development and decline of the hippocampal long-axis specialization and differentiation during encoding and retrieval of episodic memories

Espen Langnes et al.May 7, 2020
+3
M
D
E
Change in hippocampal function is a major factor in lifespan development and decline of episodic memory. Evidence indicates a long-axis specialization where anterior hippocampus is more engaged during encoding and posterior during retrieval. We tested the lifespan trajectory of hippocampal long-axis episodic memory-related activity and functional connectivity (FC). 496 participants (6.8-80.8 years) were scanned with functional MRI while encoding and retrieving associative memories. We found clear evidence for a long-axis encoding-retrieval specialization. These long-axis effects declined linearly during development and aging, eventually vanishing in the older adults. This was mainly driven by age effects on retrieval. Retrieval was associated with gradually lower activity from childhood to adulthood, followed by positive age-relationships until 70 years. Interestingly, this pattern characterized task engagement regardless of memory success or failure. Children engaged posterior hippocampus more than anterior, while anterior hippocampus was more activated relative to posterior already in teenagers. Intra-hippocampal connectivity increased during task, and this increase declined with age. In sum, the results suggest that hippocampal long-axis differentiation and communication during episodic memory tasks develop rapidly during childhood and adolescence, are markedly different in older compared to younger adults, and are related to task engagement, not the successful completion of the task.
0

Continuity and discontinuity in human cortical development and change from embryonic stages to old age

Anders Fjell et al.May 7, 2020
+14
D
C
A
The human cerebral cortex is highly regionalized. We aimed to test whether principles of regionalization could be traced from embryonic development throughout the human lifespan. A data-driven fuzzy-clustering approach was used to identify regions of coordinated longitudinal development of cortical surface area (SA) and thickness (CT) over 1.5 years (n = 301, 4-12 years). First, the SA clusters were compared to patterns from embryonic cortical development. The earliest sign of cortical regionalization is the emergence of morphometric gradients in the cerebral vesicles, with a major gradient running along the anterior-posterior (AP) axis. We found that the principal divide for the developmental SA clusters extended from the inferior-posterior to the superior-anterior cortex, corresponding to the embryonic morphometric AP gradient. Second, embryonic factors showing a clear AP gradient were identified, and tests revealed significant differences in gene expression of these factors between the anterior and posterior clusters. Further, each identified developmental SA and CT cluster showed distinguishable lifespan trajectories in a larger longitudinal dataset (4-88 years, 1633 observations). This means that regions that developed together also changed together throughout life, demonstrating continuity in regionalization of cortical changes. The AP divide in SA development also characterized genetic patterning obtained in an adult twin sample, but otherwise regionalized CT development adhered more to the genetic boundaries. Finally, SA and CT clusters showed differential relationships to cognitive functions. In sum, the results suggest that development of cortical regionalization is a continuous process from the embryonic stage throughout human life.
0

Lifespan trajectories and relationships to memory of the macro- and microstructure of the anterior and posterior hippocampus - a longitudinal multi-modal imaging study

Espen Langnes et al.May 7, 2020
+3
D
M
E
There is evidence for a hippocampal long axis anterior-posterior (AP) differentiation in memory processing, which may have implications for the changes in episodic memory performance typically seen across development and aging. The hippocampal formation shows substantial structural changes with age, but the lifespan trajectories of hippocampal sub-regions along the AP axis are not established. The aim of the present study was to test whether the micro- and macro-structural age-trajectories of the anterior (aHC) and posterior (pHC) hippocampus are different. In a single-center longitudinal study, 1790 cognitively healthy participants, 4.1-93.4 years of age, underwent a total of 3367 MRI examinations and 3033 memory tests sessions over 1-6 time points, spanning an interval up to 11.1 years. T1-weighted scans were used to estimate the volume of aHC and pHC, and diffusion tensor imaging to measure mean diffusion (MD) within each region. We found that the macro- and microstructural lifespan-trajectories of aHC and pHC were clearly distinguishable, with partly common and partly unique variance shared with age. aHC showed a protracted period of microstructural development, while pHC microstructural development as indexed by MD was more or less completed in early childhood. In contrast, pHC showed larger unique aging-related changes. A similar aHC - pHC difference was observed for volume, although not as evident as for microstructure. All sub-regions showed age-dependent relationships to episodic memory function. For aHC micro- and macrostructure, the relationships to verbal memory performance varied significantly with age, being stronger among the older participants. Future research should disentangle the relationship between these structural properties and different memory processes - encoding vs. retrieval in particular - across the lifespan.
0

Self-reported sleep relates to hippocampal atrophy across the adult lifespan - results from the Lifebrain consortium

Anders Fjell et al.May 7, 2020
+24
I
Ø
A
Background: Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan. Methods: Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18-90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants, covering up to 11 years. Cross-sectional analyses were repeated in a sample of 21390 participants from the UK Biobank. Results: The relationship between self-reported sleep and age differed across sleep items. Sleep duration, efficiency, problems, and use of medication worsened monotonously with age, whereas subjective sleep quality, sleep latency, and daytime tiredness improved. Women reported worse sleep in general than men, but the relationship to age was similar. No cross-sectional sleep - hippocampal volume relationships was found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing on average 0.22% greater annual loss than low scorers. Simulations showed that longitudinal effects were too small to be detected as age-interactions in cross-sectional analyses. Conclusions: Worse self-reported sleep is associated with higher rates of hippocampal decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation.
54

Education and income show heterogeneous relationships to lifespan brain and cognitive differences across European and US cohorts

Kristine Walhovd et al.Oct 24, 2023
+26
Y
A
K
Abstract Socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. Here we show that relationships between SES, brain volumes and general cognitive ability differ significantly across European and US cohorts (4-97 years, N ≈ 500,000; 54,000 with brain imaging). Education was positively related to intracranial (ICV) and total brain gray matter (GM) volume. Income was related to ICV, but not GM. Relationships varied significantly across samples, and SES was more strongly related to brain and cognition in US than European cohorts. Differences in neuroanatomical volumes explained part of the SES-cognition relationships. SES was more strongly related to ICV than to GM, implying that SES-cognition relations in adulthood are less likely grounded in neuroprotective effects on GM volume in aging. Rather, a relationship may be established early in life. The findings underscore that SES has no uniform association with, or impact on, brain and cognition.
0

Genetic risk for Alzheimer`s disease predicts hippocampal volume through the lifespan

Kristine Walhovd et al.May 7, 2020
+9
Ø
A
K
INTRODUCTION: It is unknown whether genetic risk for Alzheimer`s disease (AD) represents a stable influence on the brain from early in life, or whether effects are age-dependent. It is critical to characterize the effects of genetic risk factors on the primary neural substrate of AD, the hippocampus, throughout life. METHODS: Relations of polygenic risk score (PGS) for AD, including variants in Apolipoprotein E (APOE) with hippocampal volume and its change were assessed in a healthy longitudinal lifespan sample (n = 1181, 4-95 years), followed for up to 11 years with a total of 2690 MRI scans. RESULTS: AD-PGS showed a significant negative effect on hippocampal volume. Offset effects of AD-PGS and APOE ϵ4 were present in hippocampal development, and interactions between age and genetic risk on volume change were not consistently observed. DISCUSSION: Endophenotypic manifestation of polygenic risk for AD may be seen across the lifespan in healthy persons.
Load More