KD
Kamran Diba
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(88% Open Access)
Cited by:
2,315
h-index:
24
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Hippocampal CA1 pyramidal cells form functionally distinct sublayers

Kenji Mizuseki et al.Aug 7, 2011
Using silicon electrodes that can sample neurons in different layers along the length of the electrode, Mizuseki et al. find qualitative difference in the in vivo firing pattern of pyramidal neurons in the deep versus superficial dorsal CA1 layer of the rat hippocampus. Hippocampal CA1 pyramidal neurons have frequently been regarded as a homogeneous cell population in biophysical, pharmacological and modeling studies. We found robust differences between pyramidal neurons residing in the deep and superficial CA1 sublayers in rats. Compared with their superficial peers, deep pyramidal cells fired at higher rates, burst more frequently, were more likely to have place fields and were more strongly modulated by slow oscillations of sleep. Both deep and superficial pyramidal cells fired preferentially at the trough of theta oscillations during maze exploration, whereas deep pyramidal cells shifted their preferred phase of firing to the peak of theta during rapid eye movement (REM) sleep. Furthermore, although the majority of REM theta phase-shifting cells fired at the ascending phase of gamma oscillations during waking, nonshifting cells preferred the trough. Thus, CA1 pyramidal cells in adjacent sublayers can address their targets jointly or differentially, depending on brain states.
0

Relationships between Hippocampal Sharp Waves, Ripples, and Fast Gamma Oscillation: Influence of Dentate and Entorhinal Cortical Activity

Danielle Sullivan et al.Jun 8, 2011
Hippocampal sharp waves (SPWs) and associated fast ("ripple") oscillations (SPW-Rs) in the CA1 region are among the most synchronous physiological patterns in the mammalian brain. Using two-dimensional arrays of electrodes for recording local field potentials and unit discharges in freely moving rats, we studied the emergence of ripple oscillations (140–220 Hz) and compared their origin and cellular–synaptic mechanisms with fast gamma oscillations (90–140 Hz). We show that (1) hippocampal SPW-Rs and fast gamma oscillations are quantitatively distinct patterns but involve the same networks and share similar mechanisms; (2) both the frequency and magnitude of fast oscillations are positively correlated with the magnitude of SPWs; (3) during both ripples and fast gamma oscillations the frequency of network oscillation is higher in CA1 than in CA3; and (4) the emergence of CA3 population bursts, a prerequisite for SPW-Rs, is biased by activity patterns in the dentate gyrus and entorhinal cortex, with the highest probability of ripples associated with an "optimum" level of dentate gamma power. We hypothesize that each hippocampal subnetwork possesses distinct resonant properties, tuned by the magnitude of the excitatory drive.
0
Citation280
0
Save
0

Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons

Kenji Mizuseki et al.Feb 27, 2012
Abstract The CA3 and CA1 pyramidal neurons are the major principal cell types of the hippocampus proper. The strongly recurrent collateral system of CA3 cells and the largely parallel‐organized CA1 neurons suggest that these regions perform distinct computations. However, a comprehensive comparison between CA1 and CA3 pyramidal cells in terms of firing properties, network dynamics, and behavioral correlations is sparse in the intact animal. We performed large‐scale recordings in the dorsal hippocampus of rats to quantify the similarities and differences between CA1 ( n > 3,600) and CA3 ( n > 2,200) pyramidal cells during sleep and exploration in multiple environments. CA1 and CA3 neurons differed significantly in firing rates, spike burst propensity, spike entrainment by the theta rhythm, and other aspects of spiking dynamics in a brain state‐dependent manner. A smaller proportion of CA3 than CA1 cells displayed prominent place fields, but place fields of CA3 neurons were more compact, more stable, and carried more spatial information per spike than those of CA1 pyramidal cells. Several other features of the two cell types were specific to the testing environment. CA3 neurons showed less pronounced phase precession and a weaker position versus spike‐phase relationship than CA1 cells. Our findings suggest that these distinct activity dynamics of CA1 and CA3 pyramidal cells support their distinct computational roles. © 2012 Wiley Periodicals, Inc.
0

Sleep loss diminishes hippocampal reactivation and replay

Bapun Giri et al.Jun 12, 2024
Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events. A study of neuronal activity in rats finds that sleep loss adversely affects hippocampal function and memory by dissociating hippocampal sharp-wave ripples from memory replay and reactivation events.
0

Low activity microstates during sleep

Hiroyuki Miyawaki et al.Aug 4, 2016
Abstract A better understanding of sleep requires evaluating the distinct activity patterns of the brain during sleep. We performed extracellular recordings of large populations of hippocampal region CA1 neurons in freely moving rats across sleep and waking states. Throughout non-REM (non-rapid eye movement) sleep, we observed periods of diminished oscillatory and population spiking activity lasting on the order of seconds, which we refer to as “LOW” activity sleep states. LOW states featured enhanced firing in a subset of “LOW-active” cells, and greater firing in putative interneurons compared to DOWN/OFF states. LOW activity sleep was preceded and followed by increased sharp-wave ripple (SWR) activity. We also observed decreased slow-wave activity (SWA) and sleep spindles in the hippocampus local-field potential (LFP) and neocortical electroencephalogram (EEG) upon LOW onset, but only a partial rebound immediately after LOW. LOW states demonstrated LFP, EEG, and EMG patterns consistent with sleep, but frequently transitioned into microarousals (MAs) and showed EMG and LFP spectral differences from previously described small-amplitude irregular activity (SIA) during quiet waking. Their likelihood increased over the course of sleep, particularly following REM sleep. To confirm that LOW is a brain-wide phenomenon, we analyzed data from the entorhinal cortex of rats, medial prefrontal cortex, and anterior thalamus of mice, obtained from crcns.org and found that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep, and may serve a restorative function.
0

Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding

Dongsheng Luo et al.Mar 7, 2024
Abstract Dimension reduction on neural activity paves a way for unsupervised neural decoding by dissociating the measurement of internal neural state repetition from the measurement of external variable tuning. With assumptions only on the smoothness of latent dynamics and of internal tuning curves, the Poisson Gaussian-process latent variable model (P-GPLVM) (Wu et al., 2017) is a powerful tool to discover the low-dimensional latent structure for high-dimensional spike trains. However, when given novel neural data, the original model lacks a method to infer their latent trajectories in the learned latent space, limiting its ability for estimating the internal state repetition. Here, we extend the P-GPLVM to enable the latent variable inference of new data constrained by previously learned smoothness and mapping information. We also describe a principled approach for the constrained latent variable inference for temporally-compressed patterns of activity, such as those found in population burst events (PBEs) during hippocampal sharp-wave ripples, as well as metrics for assessing whether the inferred new latent variables are congruent with a previously learned manifold in the latent space. Applying these approaches to hippocampal ensemble recordings during active maze exploration, we replicate the result that P-GPLVM learns a latent space encoding the animal’s position. We further demonstrate that this latent space can differentiate one maze context from another. By inferring the latent variables of new neural data during running, certain internal neural states are observed to repeat, which is in accordance with the similarity of experiences encoded by its nearby neural trajectories in the training data manifold. Finally, repetition of internal neural states can be estimated for neural activity during PBEs as well, allowing the identification for replay events of versatile behaviors and more general experiences. Thus, our extension of the P-GPLVM framework for unsupervised analysis of neural activity can be used to answer critical questions related to scientific discovery.
1

Chemogenetic enhancement of cAMP signaling renders hippocampal synaptic plasticity resilient to the impact of acute sleep deprivation

Emily Walsh et al.Mar 14, 2022
Abstract Sleep facilitates memory storage and even brief periods of sleep loss lead to impairments in memory, particularly memories that are hippocampus dependent. In previous studies, we have shown that the deficit in memory seen after sleep loss is accompanied by deficits in synaptic plasticity. Our previous work has also found that sleep deprivation is associated with reduced levels of cyclic adenosine monophosphate (cAMP) in the hippocampus, and that the reduction of cAMP mediates the diminished memory performance. Based on these findings, we hypothesized that cAMP acts as a mediator for not only the cognitive deficits caused by sleep deprivation, but also the observed deficits in synaptic plasticity. In this study, we expressed the heterologous Drosophila melanogaster Gαs-protein coupled octopamine receptor (DmOctβ1R) in mouse hippocampal neurons. This receptor is selectively activated by the systemically injected ligand (octopamine), thus allowing us to increase cAMP levels in hippocampal neurons during a five-hour sleep deprivation period. Our results show that chemogenetic enhancement of cAMP during the period of sleep deprivation prevents deficits in a persistent form of long-term potentiation (LTP) that is induced at the Schaffer collateral synapses in the hippocampal CA1 region. We also found that elevating cAMP levels only in the early or later half of sleep deprivation successfully prevented LTP deficits. These findings reveal that cAMP-dependent signaling pathways are key mediators of sleep deprivation at the synaptic level. Targeting these pathways could be useful in designing strategies to prevent the impact of sleep loss. Significance statement Insufficient sleep is an issue with significant health and socioeconomic implications. This includes a negative impact on memory consolidation. Previous studies in mice found that acute sleep deprivation leads to deficits in hippocampal synaptic plasticity and memory, which are associated with reduced levels of the signaling molecule cAMP. In this study, we used a chemogenetic strategy to enhance cAMP levels in specific hippocampal neurons during sleep deprivation. We found that this made synaptic plasticity resilient to the negative effects of sleep deprivation. These findings reveal that cAMP-dependent signaling pathways are key mediators of sleep deprivation and that targeting these pathways could be useful in designing strategies to prevent the impact of sleep loss.
1

Simultaneous Electrophysiology and Optogenetic Perturbation of the Same Neurons in Chronically Implanted Animals using μLED Silicon Probes

Nathaniel Kinsky et al.Feb 6, 2023
Optogenetics are a powerful tool for testing how a neural circuit influences neural activity, cognition, and behavior. Accordingly, the number of studies employing optogenetic perturbation has grown exponentially over the last decade. However, recent studies have highlighted that the impact of optogenetic stimulation/silencing can vary depending on the construct used, the local microcircuit connectivity, extent/power of illumination, and neuron types perturbed. Despite these caveats, the majority of studies employ optogenetics without simultaneously recording neural activity in the circuit that is being perturbed. This dearth of simultaneously recorded neural data is due in part to technical difficulties in combining optogenetics and extracellular electrophysiology. The recent introduction of μLED silicon probes, which feature independently controllable miniature LEDs embedded at several levels of each of multiple shanks of silicon probes, provides a tractable method for temporally and spatially precise interrogation of neural circuits. Here, we provide a protocol addressing how to perform chronic recordings using μLED probes. This protocol provides a schematic for performing causal and reproducible interrogations of neural circuits and addresses all phases of the recording process: introduction of optogenetic construct, implantation of the μLED probe, performing simultaneous optogenetics and electrophysiology
Load More