MY
Meng Yang
Author with expertise in Diagnosis and Management of Fungal Infections
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1
h-index:
32
/
i10-index:
86
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification

Ning Guo et al.Oct 15, 2020
Abstract Brassica oleracea includes several morphologically diverse, economically important vegetable crops. Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~120 K high-confidence structural variants (SVs). Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea , and the newly assembled genomes and the SVs provide rich resources for future research and breeding.
9
Citation1
0
Save
0

Protocatechuic acid induces endogenous oxidative stress in CR-hvKP by regulating the EMP-PPP pathway

Yuchao Zhong et al.Mar 7, 2024
ABSTRACT Background Klebsiella pneumoniae is an important opportunistic pathogen and zoonotic pathogen. The widespread use of antibiotics has led to the emergence of a large number of multidrug-resistant Klebsiella pneumoniae in clinical animal husbandry, posing a serious threat to global health security. Protocatechuic acid (PCA) is a phenolic acid substance naturally present in many vegetables and fruits. It is a safe and highly developed new type of antibacterial synergist. Purpose This study explored the antibacterial and synergistic mechanisms of PCA against Carbapenem-resistant hypervirulent Klebsiella pneumoniae. Study design Metabolomic analysis using PCA to investigate the metabolic effects of CR-hvKP and further explore the antibacterial mechanisms resulting from this metabolic regulation. Methods The MIC of PCA was measured by microdilution, and its bactericidal effect was observed by DAPI staining. Resistance and hemolysis tests were performed to ensure safety. The synergy of PCA and meropenem was tested by checkerboard assay. The biofilm inhibition was assessed by crystal violet and EPS assays. The membrane morphology, permeability, and potential were examined by SEM, PI, NPN, and DiSC3(5). The metabolic changes were evaluated by AlamarBlue, metabolomics, enzyme activity, ELISA, molecular docking, and qRT-PCR. The oxidative stress and metabolic disorders were verified by NADP(H), ROS, MDA, and ATP assays. Results The results showed that PCA can synergize with antibiotics and inhibit the biofilm and membrane functions of CR-hvKP at low concentrations. Metabolomics revealed that PCA affects the EMP and PPP pathways of CR-hvKP, causing oxidative stress. This involves the binding of PGAM and the downregulation of BPGM, leading to the accumulation of glycerate-3P. This results in the inhibition of G6PDH and the imbalance of NADPH/NADP+, disrupting the energy metabolism and increasing the oxidative stress, which impair the biofilm and membrane functions and enhance the antibiotic efficacy. Conclusion The results demonstrate that PCA regulates the EMP-linked PPP pathway of CR-hvKP, inhibits biofilm and membrane functions, and synergizes with antibiotics to kill bacteria, providing new insights and candidates for natural antibacterial enhancers. Author Summary Klebsiella pneumoniae is a common pathogenic bacterium that can infect both humans and animals, causing serious diseases such as pneumonia, meningitis, and sepsis. Due to the overuse of antibiotics, this bacterium has developed resistance to many drugs, posing a significant threat to global health security. Through our research, we have discovered a natural substance called protocatechuic acid (PCA) that can enhance the effectiveness of antibiotics against this bacterium. PCA is found in many vegetables and fruits and is a safe and non-toxic antibacterial adjuvant. Our analysis of the metabolomics of PCA on Klebsiella pneumoniae has revealed its antibacterial and synergistic mechanisms. The study found that PCA can affect the bacterium’s sugar metabolism pathway, leading to the generation of endogenous oxidative stress. This disrupts their energy metabolism, damages their cell membranes and biofilms, making them more susceptible to being killed by antibiotics. Through this mechanism, PCA can synergize with common antibiotics such as meropenem, enhancing their bactericidal ability. Our research has demonstrated that PCA is an effective antibacterial adjuvant, providing new candidates and insights for the development of natural antibacterial agents. Graphical abstract
1

Comparative miRNA Transcriptomics of Mouse and Macaque Reveals MYOC is An Inhibitor for C. neoformans Invasion into Brain

Hailong Li et al.Feb 14, 2022
Abstract Cryptococcal meningoencephalitis is an emerging infection shifted from primarily ART-naive to being ART-experienced HIV/AIDS patients, COVID-19 patients and also in immune competent individuals, mainly caused by the human opportunistic pathogen Cryptococcus neoformans , yet mechanisms of the brain or CNS dissemination remain to elucidate, which is the deadest process for the disease. Meanwhile, illustrations of clinically relevant responses in cryptococcosis were limited, as the low availabilities of clinical samples. In this study, macaque and mouse infection models were employed and miRNA-mRNA transcriptomes were performed and combined, which revealed cytoskeleton, a major feather in HIV/AIDS patients, was a centric pathway regulated in both two infection models. Notably, assays of clinical immune cells confirmed an enhanced “Trojan Horse” in HIV/AIDS patients, which can be shut down by cytoskeleton inhibitors. Furthermore, we identified a novel enhancer for macrophage “Trojan Horse”, myocilin, and an enhanced fungal burden was achieved in brains of MYOC transgenic mice. Taking together, this study reveals fundamental roles of cytoskeleton and MYOC in blocking fungal CNS dissemination, which not only helps to understand the high prevalence of cryptococcal meningitis in HIV/AIDS, but also facilitates the development of novel drugs for therapies of meningoencephalitis caused by C. neoformans and other pathogenic microorganisms.
3

Interplay between acetylation and ubiquitination of imitation switch chromatin remodeler Isw1 confers multidrug resistance inCryptococcus neoformans

Meng Yang et al.Dec 30, 2022
Abstract Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for multidrug resistance in C. neoformans . Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1 K97 coordinates with its ubiquitination processes at Isw1 K113 and Isw1 K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1 K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans .