EE
Eric Engelbrecht
Author with expertise in Sphingolipid Signalling and Metabolism in Health and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
209
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Resolving haplotype variation and complex genetic architecture in the human immunoglobulin kappa chain locus in individuals of diverse ancestry

Eric Engelbrecht et al.Oct 25, 2023
Abstract Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of IG loci has hindered effective use of standard high- throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we leverage long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort (n=36), representing the first comprehensive description of IGK haplotype variation at population-scale. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and a common novel ∼24.7 Kbp structural variant harboring a functional IGKV gene. Among 47 functional IGKV genes, we identify 141 alleles, 64 (45.4%) of which were not previously curated. We report inter-population differences in allele frequencies for 14 of the IGKV genes, including alleles unique to specific populations within this dataset. Finally, we identify haplotypes carrying signatures of gene conversion that associate with enrichment of SNVs in the IGK distal region. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.
0
Citation2
0
Save
0

Resolving haplotype variation and complex genetic architecture in the human immunoglobulin kappa chain locus in individuals of diverse ancestry

Eric Engelbrecht et al.Jun 6, 2024
Abstract Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of the IG loci has hindered use of standard high-throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we use long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort ( n = 36), representing the first comprehensive description of IGK haplotype variation. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and novel structural variants harboring functional IGKV genes. Among 47 functional IGKV genes, we identify 145 alleles, 67 of which were not previously curated. We report inter-population differences in allele frequencies for 10 IGKV genes, including alleles unique to specific populations within this dataset. We identify haplotypes carrying signatures of gene conversion that associate with SNV enrichment in the IGK distal region, and a haplotype with an inversion spanning the proximal and distal regions. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.
0
Citation1
0
Save
0

Heterotypic inter-GPCR β-arrestin coupling regulates lymphatic endothelial junctional architecture in murine lymph nodes

Yu Hisano et al.Oct 4, 2018
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) activate G protein-coupled receptors (GPCRs) to regulate key pathobiological processes. Here we report a novel lipid mediator GPCR cross-talk mechanism that modulates lymphatic endothelial junctional architecture in lymph nodes. LPAR1 was identified as an inducer of S1PR1/ β-arrestin coupling from a genome-wide CRISPR/ Cas9 transcriptional activation screen. LPAR1 activation induced S1PR1 β-arrestin recruitment while suppressing Gαi protein signaling. Lymphatic endothelial cells from cortical and medullary sinuses of lymph nodes which express LPAR1 and S1PR1, exhibit porous junctional architecture and constitutive S1PR1 coupling to β-arrestin which was suppressed by the LPAR1 antagonist AM095. In endothelial cells, LPAR1-activation increased trans-endothelial permeability and junctional remodeling from zipper-like structures to puncta of adhesion plaques that terminate at actin-rich stress fibers with abundant intercellular gaps. Cross-talk between LPA and S1P receptors regulates complex junctional architecture of lymphatic sinus endothelial cells, a site of high lymphocyte traffic and lymph flow.
0

Addressing technical pitfalls in pursuit of molecular factors that mediate immunoglobulin gene regulation

Eric Engelbrecht et al.Mar 8, 2024
Abstract The expressed antibody repertoire is a critical determinant of immune-related phenotypes. Antibody-encoding transcripts are distinct from other expressed genes because they are transcribed from somatically rearranged gene segments. Human antibodies are composed of two identical heavy and light chain polypeptides derived from genes in the immunoglobulin heavy chain (IGH) locus and one of two light chain loci. The combinatorial diversity that results from antibody gene rearrangement and the pairing of different heavy and light chains contributes to the immense diversity of the baseline antibody repertoire. During rearrangement, antibody gene selection is mediated by factors that influence chromatin architecture, promoter/enhancer activity, and V(D)J recombination. Interindividual variation in the composition of the antibody repertoire associates with germline variation in IGH, implicating polymorphism in antibody gene regulation. Determining how IGH variants directly mediate gene regulation will require integration of these variants with other functional genomic datasets. Here, we argue that standard approaches using short reads have limited utility for characterizing regulatory regions in IGH at haplotype-resolution. Using simulated and ChIP-seq reads, we define features of IGH that limit use of short reads and a single reference genome, namely 1) the highly duplicated nature of DNA sequence in IGH and 2) structural polymorphisms that are frequent in the population. We demonstrate that personalized diploid references enhance performance of short-read data for characterizing mappable portions of the locus, while also showing that long-read profiling tools will ultimately be needed to fully resolve functional impacts of IGH germline variation on expressed antibody repertoires.
0

Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta

Eric Engelbrecht et al.Oct 13, 2019
Despite the medical importance of G protein-coupled receptors (GPCRs), in vivo cellular heterogeneity of GPCR signaling and downstream transcriptional responses are not understood. We report the comprehensive characterization of transcriptomes (bulk and single-cell) and chromatin domains regulated by sphingosine 1-phosphate receptor-1 (S1PR1) in adult mouse aortic endothelial cells. First, S1PR1 regulates NFκB and nuclear glucocorticoid receptor pathways to suppress inflammation-related mRNAs. Second, spatially distinct S1PR1 signaling in the aorta is associated with heterogenous endothelial cell (EC) subtypes. For example, a transcriptomically distinct arterial EC population at vascular branch points (aEC1) exhibits ligand-independent S1PR1/β-arrestin coupling. In contrast, circulatory S1P-dependent S1PR1/β-arrestin coupling was observed in non-branch point aEC2 cells that exhibit an inflammatory signature. Moreover, an adventitial lymphatic EC (LEC) population shows suppression of lymphangiogenic and inflammation-related transcripts in a S1P/S1PR1-dependent manner. These insights add resolution to existing concepts of GPCR signaling and S1P biology.