KF
Karen Fleming
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
4
h-index:
57
/
i10-index:
132
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
30

A Proteome-Wide Map of Chaperone-Assisted Protein Refolding in the Cytosol

Philip To et al.Nov 21, 2021
+2
T
Y
P
Abstract The journey by which proteins navigate their energy landscapes to their native structures is complex, involving (and sometimes requiring) many cellular factors and processes operating in partnership with a given polypeptide chain’s intrinsic energy landscape. The cytosolic environment and its complement of chaperones play critical roles in granting proteins safe passage to their native states; however, the complexity of this medium has generally precluded biophysical techniques from interrogating protein folding under cellular-like conditions for single proteins, let alone entire proteomes. Here, we develop a limited-proteolysis mass spectrometry approach paired with an isotope-labeling strategy to globally monitor the structures of refolding E. coli proteins in the cytosolic medium and with the chaperones, GroEL/ES (Hsp60) and DnaK/DnaJ/GrpE (Hsp70/40). GroEL can refold the majority (85%) of the E. coli proteins for which we have data, and is particularly important for restoring acidic proteins and proteins with three to five domains, trends that come to light because our assay measures the structural outcome of the refolding process itself, rather than indirect measures like binding or aggregation. For the most part, DnaK and GroEL refold a similar set of proteins, supporting the view that despite their vastly different structures, these two chaperones both unfold misfolded states, as one mechanism in common. Finally, we identify a cohort of proteins that are intransigent to being refolded with either chaperone. The data support a model in which chaperone-nonrefolders have evolved to fold efficiently once and only once, co-translationally, and remain kinetically trapped in their native conformations.
30
Citation4
0
Save
0

Protein structure prediction and design in a biologically-realistic implicit membrane

Rebecca Alford et al.May 8, 2019
J
K
P
R
Protein design is a powerful tool for elucidating mechanisms of function and engineering new therapeutics and nanotechnologies. While soluble protein design has advanced, membrane protein design remains challenging due to difficulties in modeling the lipid bilayer. In this work, we developed an implicit approach that captures the anisotropic structure, shape of water-filled pores, and nanoscale dimensions of membranes with different lipid compositions. The model improves performance in computational benchmarks against experimental targets including prediction of protein orientations in the bilayer, ddG calculations, native structure discrimination, and native sequence recovery. When applied to de novo protein design, this approach designs sequences with an amino acid distribution near the native amino acid distribution in membrane proteins, overcoming a critical flaw in previous membrane models that were prone to generating leucine-rich designs. Further, the proteins designed in the new membrane model exhibit native-like features including interfacial aromatic side chains, hydrophobic lengths compatible with bilayer thickness, and polar pores. Our method advances high-resolution membrane protein structure prediction and design toward tackling key biological questions and engineering challenges.
0

SurA is a "Groove-y" Chaperone That Expands Unfolded Outer Membrane Proteins

Dagan Marx et al.Dec 18, 2019
+9
A
A
D
Chaperone proteins play a critical role in the biogenesis of many nascent polypeptides in vivo. In the periplasm of E. coli this role is partially fulfilled by SurA, which promotes the efficient assembly of unfolded outer membrane proteins (uOMPs) into the bacterial outer membrane, though the mechanism by which SurA interacts with uOMPs is not well understood. Here we identify multiple conformations of SurA in solution, one of which contains a cradle-like groove in which client uOMPs bind. Access to this binding groove by clients is gated by the intrinsic conformational dynamics of SurA. Crosslinking mass spectrometry experiments identify multiple regions of native client uOMPs that bind to SurA, providing insight into the molecular determinants of SurA-uOMP interactions. In contrast to other periplasmic chaperones that encapsulate uOMPs, small angle neutron scattering data demonstrate that SurA binding greatly expands client uOMPs. These data can explain the dual roles of SurA as both a holdase and a foldase. Using an integrative modeling approach that combines crosslinking, mass spectrometry, small angle neutron scattering, and simulation, we propose structural models of SurA in complex with an unfolded protein client. We further find that multiple SurA monomers are able to bind discrete sites on a single uOMP. The structural arrangement of SurA and uOMPs provides the basis for a possible mechanism by which SurA binds and expands clients in a manner that facilitates their folding into the outer membrane.
0

The Molecular Basis for Hydrodynamic Properties of PEGylated Human Serum Albumin

Patrick Fleming et al.Mar 11, 2024
K
J
P
ABSTRACT Polyethylene glycol conjugation provides a protective modification that enhances the pharmacokinetics and solubility of proteins for therapeutic use. A knowledge of the structural ensemble of these PEGylated proteins is necessary to understand the molecular details that contribute to their hydrodynamic and colligative properties. Because of the large size and dynamic flexibility of pharmaceutically important PEGylated proteins, the determination of structure is challenging. Here we demonstrate that structural ensembles, generated by coarse-grained simulations, can be analyzed with HullRad and used to predict sedimentation coefficients and concentration dependent hydrodynamic and diffusion nonideality coefficients of PEGylated proteins. A knowledge of these properties enhances the ability to design and analyze new modified protein therapeutics. STATEMENT OF SIGNIFICANCE Proteins constitute a growing class of biotherapeutics. Chemical modification(s) with inert polymers are known to enhance the serum half-life and formulation of these biological therapeutics but the effects of modification on protein-protein interactions in solution have been difficult to predict. Here we describe methods for predicting the molecular basis for the hydrodynamic properties of polymer conjugated proteins that determine their solution behavior.
0

Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy

Evan O’Brien et al.Apr 3, 2020
+7
B
S
E
For a variety of reasons, the internal motions of integral membrane proteins have largely eluded comprehensive experiential characterization. Here, the fast side chain dynamics of the 7-transmembrane helix protein sensory rhodopsin II and the beta-barrel bacterial outer membrane channel protein W have been characterized in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Though of quite different topologies, both proteins are found to have a similar and striking distribution of methyl-bearing amino acid side chain motion that is independent of membrane mimetic. The methyl-bearing side chains of both proteins, on average, are more dynamic in the ps-ns time regime than any soluble protein characterized to date. Approximately one third of methyl-bearing side chains exhibit extreme rotameric averaging on this timescale. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect that normally stabilizes the folded state of water-soluble proteins. Furthermore, the large reservoir of conformational entropy that is observed provides the potential to greatly influence the thermodynamics underlying a plethora of membrane protein functions including ligand binding, allostery and signaling.
3

Generation of Unfolded Outer Membrane Protein Ensembles Targeted by Hydrodynamic Properties

Taylor Devlin et al.Nov 1, 2022
K
N
P
T
Abstract Outer membrane proteins (OMPs) must exist as an unfolded ensemble while interacting with a chaperone network in the periplasm of Gram-negative bacteria. Here, we developed a method to model unfolded OMP (uOMP) conformational ensembles using experimental properties of two well-studied OMPs. The overall size and shape of the unfolded ensembles in water were experimentally defined by measuring the sedimentation coefficient as a function of urea concentration. We used these data to model a full range of unfolded conformations by parameterizing a targeted coarse-grained simulation protocol. The ensemble members were further refined by short molecular dynamics simulations to reflect proper torsion angles. The final conformational ensembles reveal inherent differences in the unfolded states that necessitate further investigation. Building these uOMP ensembles advances the understanding of OMP biogenesis and produces essential information for interpreting structures of uOMP-chaperone complexes.
15

FkpA Enhances Membrane Protein Folding using an Extensive Interaction Surface

Taylor Devlin et al.Nov 2, 2022
+3
M
D
T
Abstract Outer membrane protein (OMP) biogenesis in gram-negative bacteria is managed by a network of periplasmic chaperones that includes SurA, Skp, and FkpA. These chaperones bind unfolded OMPs (uOMPs) in dynamic conformational ensembles to suppress uOMP aggregation, facilitate diffusion across the periplasm, and enhance OMP folding. FkpA primarily responds to heat-shock stress, but its mechanism is comparatively understudied. To determine FkpA chaperone function, we monitored the folding of a cognate client uOmpA 171 and found that FkpA increases the folded uOmpA 171 population but also slows the folding rate, dual functions distinct from the other periplasmic chaperones. The results indicate that FkpA behaves as a chaperone and not as a folding catalyst to directly influence the uOmpA 171 folding trajectory. We determine the binding affinity between FkpA and uOmpA 171 by globally fitting sedimentation velocity titrations and found it to be intermediate between the known affinities of Skp and SurA for uOMP clients. Notably, complex formation steeply depends on the urea concentration, suggestive of an extensive binding interface. Initial characterizations of the complex using photo-crosslinking indicates that the binding interface spans the inner surfaces of the entire FkpA molecule. In contrast to prior findings, folding and binding experiments performed using subdomain constructs of FkpA demonstrate that the full-length chaperone is required for full activity. Together these results support that FkpA has a distinct and direct effect on uOMP folding and that it achieves this by utilizing an extensive chaperone-client interface. Significance The periplasmic chaperone network is required for the survival and virulence of gram-negative bacteria. Here we find that the chaperone FkpA enhances outer membrane protein folding and tightly binds its clients with an extensive interaction interface. This modified holdase function of FkpA distinguishes it from other periplasmic chaperones and complements their functions to ensure robust outer membrane biogenesis.
10

Local Bilayer Hydrophobicity Modulates Membrane Protein Stability

Dagan Marx et al.Sep 1, 2020
K
D
ABSTRACT Through the insertion of nonpolar side chains into the bilayer, the hydrophobic effect has long been accepted as a driving force for membrane protein folding. However, how the changing chemical composition of the bilayer affects the magnitude side chain transfer free energies has historically not been well understood. A particularly challenging region for experimental interrogation is the bilayer interfacial region that is characterized by a steep polarity gradient. In this study we have determined the for nonpolar side chains as a function of bilayer position using a combination of experiment and simulation. We discovered an empirical correlation between the surface area of nonpolar side chain, the transfer free energies, and the local water concentration in the membrane that allows for to be accurately estimated at any location in the bilayer. Using these water-to-bilayer values, we calculated the interface-to-bilayer transfer free energy . We find that the are similar to the “biological”, translocon-based transfer free energies, indicating that the translocon energetically mimics the bilayer interface. Together these findings can be applied to increase the accuracy of computational workflows used to identify and design membrane proteins, as well as bring greater insight into our understanding of how disease-causing mutations affect membrane protein folding and function.
0

De novo design of transmembrane β-barrels

Anastassia Vorobieva et al.Oct 23, 2020
+16
B
V
A
Abstract The ability of naturally occurring transmembrane β-barrel proteins (TMBs) to spontaneously insert into lipid bilayers and form stable transmembrane pores is a remarkable feat of protein evolution and has been exploited in biotechnology for applications ranging from single molecule DNA and protein sequencing to biomimetic filtration membranes. Because it has not been possible to design TMBs from first principles, these efforts have relied on re-engineering of naturally occurring TMBs that generally have a biological function very different from that desired. Here we leverage the power of de novo computational design coupled with a “hypothesis, design and test” approach to determine principles underlying TMB structure and folding, and find that, unlike almost all other classes of protein, locally destabilizing sequences in both the β-turns and β-strands facilitate TMB expression and global folding by modulating the kinetics of folding and the competition between soluble misfolding and proper folding into the lipid bilayer. We use these principles to design new eight stranded TMBs with sequences unrelated to any known TMB and show that they insert and fold into detergent micelles and synthetic lipid membranes. The designed proteins fold more rapidly and reversibly in lipid membranes than the TMB domain of the model native protein OmpA, and high resolution NMR and X-ray crystal structures of one of the designs are very close to the computational model. The ability to design TMBs from first principles opens the door to custom design of TMBs for biotechnology and demonstrates the value of de novo design to investigate basic protein folding problems that are otherwise hidden by evolutionary history. One sentence summary Success in de novo design of transmembrane β-barrels reveals geometric and sequence constraints on the fold and paves the way to design of custom pores for sequencing and other single-molecule analytical applications.