RJ
R. Johnson
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
953
h-index:
33
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
42

Btbd11 is an inhibitory interneuron specific synaptic scaffolding protein that supports excitatory synapse structure and function

Alexei Bygrave et al.Nov 2, 2021
SUMMARY Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific differences in the composition of glutamatergic synapses, identifying Btbd11, as an inhibitory interneuron-specific synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic post synaptic density in synapses in inhibitory and excitatory neurons exist in a phase separated state. Knockout of Btbd11 from inhibitory interneurons decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo , we find that Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific protein that supports glutamatergic synapse function in inhibitory interneurons—with implication for circuit function and animal behavior.
42
Citation7
0
Save
1

KIBRA-PKCγ signaling pathway modulates memory performance in mice and humans

Mengnan Tian et al.Oct 28, 2021
Human memory is a polygenic cognitive trait that is fundamental to individual competence. Genome-wide association studies (GWAS) have identified KIBRA as a novel gene associated with human memory performance. KIBRA interacts with AMPA receptors (AMPARs) and proteins essential for synaptic plasticity. The deletion of Kibra in mice impairs synaptic plasticity and learning and memory. However, the molecular basis through which KIBRA regulates dynamic AMPAR trafficking underlying synaptic plasticity is still unknown. Here we report that KIBRA interacts with the neuronal specific kinase PKCγ to modulate AMPAR trafficking upon learning, and KIBRA-PKCƔ signaling pathway also associates with human memory performance. We find PKCƔ is an essential kinase that phosphorylates AMPARs upon learning, and the loss of KIBRA in mouse brain impedes PKCƔ-AMPAR interaction. Activation of PKCƔ enables KIBRA to recruit phosphorylated AMPARs to the synapse to promote LTP and learning. We further performed transcriptomic and genetic analyses in human postmortem brain samples, and behavioral and fMRI evaluations in living human subjects, to demonstrate the genetic interactions between KIBRA and PRKCG on memory performance and memory associated physiological engagement of the hippocampal memory system. Overall, our results support that the KIBRA-PKCƔ signaling pathway is crucial for modulating memory performance in mice and humans.
1
Citation2
0
Save
59

Calcium-permeable AMPA receptors govern PV neuron feature selectivity

Ingie Hong et al.Jul 20, 2023
The brain helps us survive by forming internal representations of the external world 1,2 . Excitatory cortical neurons are often precisely tuned to specific external stimuli 3,4 . However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective 5 . PV interneurons differ from excitatory cells in their neurotransmitter receptor subtypes, including AMPA receptors 6,7 . While excitatory neurons express calcium-impermeable AMPA receptors containing the GluA2 subunit, PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find a low expression stoichiometry of GluA2 mRNA relative to other subunits in PV interneurons which is conserved across ferrets, rodents, marmosets, and humans, causing abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Sparse CP-AMPAR manipulations demonstrated that this increase was cell-autonomous and could occur well beyond development. Interestingly, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, suggesting that the selectivity of PV interneurons can be altered without drastically changing connectivity. In GluA2 knockout mice, where all AMPARs are calcium-permeable, excitatory neurons showed significantly reduced orientation selectivity, suggesting that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Remarkably, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, indicating that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a novel role of CP-AMPARs in maintaining a low-selectivity sensory representation in PV interneurons and suggest a conserved molecular mechanism that distinguishes the unique synaptic computations of inhibitory and excitatory neurons.
0

Modulation of GABAA receptor trafficking by WWC2 reveals class-specific mechanisms of synapse regulation by WWC family proteins

Thomas Dunham et al.Mar 12, 2024
SUMMARY WWC2 (WW and C2 domain-containing protein) is implicated in several neurological disorders, however its function in the brain has yet to be determined. Here, we demonstrate that WWC2 interacts with inhibitory but not excitatory postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses GABA A R incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABA A R recycling to the membrane. Inhibitory synaptic transmission is dysregulated in CA1 pyramidal cells lacking WWC2. Furthermore, unlike the WWC2 homolog KIBRA (WWC1), a key regulator of AMPA receptor trafficking at excitatory synapses, deletion of WWC2 does not affect synaptic AMPAR expression. In contrast, loss of KIBRA does not affect GABA A R membrane expression. These data reveal unique, synapse class-selective functions for WWC proteins as regulators of ionotropic neurotransmitter receptors and provide insight into mechanisms regulating GABA A R membrane expression.
Load More