IP
Ilaria Piazza
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
643
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

Metabolite interactions in the bacterial Calvin cycle and implications for flux regulation

Emil Sporre et al.Mar 15, 2022
Abstract Metabolite-level regulation of enzyme activity is important for microbes to cope with environmental shifts. Knowledge of such regulations can also guide strain engineering to improve industrial phenotypes. Recently developed chemoproteomics workflows allow for genome-wide detection of metabolite-protein interactions that may regulate pathway activity. We applied limited proteolysis small molecule mapping (LiP-SMap) to identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria and two lithoautotrophic bacteria that fix CO 2 using the Calvin cycle. Clustering analysis of the hundreds of detected interactions showed that some metabolites interacted in a species-specific manner, such as interactions of glucose-6-phosphate in Cupriavidus necator and of glyoxylate in Synechocystis sp PCC 6803. These are interpreted in light of the different central carbon conversion pathways present. Metabolites interacting with the Calvin cycle enzymes fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) and transketolase were tested for effects on catalytic activity in vitro . The Calvin cycle intermediate glyceraldehyde-3-phosphate activated both Synechocystis and Cupriavidus F/SBPase, which suggests a feed-forward activation of the cycle in both photoautotrophs and chemolithoautotrophs. In contrast to the stimulating effect in reduced conditions, glyceraldehyde-3-phosphate inactivated the Synechocystis F/SBPase in oxidized conditions by accelerating protein aggregation. Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously appreciated and may act in addition to redox regulation.
14
Citation2
0
Save
0

LiP-Quant, an automated chemoproteomic approach to identify drug targets in complex proteomes

Ilaria Piazza et al.Dec 1, 2019
Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in developing optimized small-molecule compounds. Current unbiased approaches cannot directly pinpoint the interaction surfaces between ligands and protein targets. To address his limitation we have developed a new drug target deconvolution approach based on limited proteolysis coupled with mass spectrometry that works across species including human cells (LiP-Quant). LiP-Quant features an automated data analysis pipeline and peptide-level resolution for the identification of any small-molecule binding sites, Here we demonstrate drug target identification by LiP-Quant across compound classes, including compounds targeting kinases and phosphatases. We demonstrate that LiP-Quant estimates the half maximal effective concentration (EC50) of compound binding sites in whole cell lysates. LiP-Quant identifies targets of both selective and promiscuous drugs and correctly discriminates drug binding to homologous proteins. We finally show that the LiP-Quant technology identifies targets of a novel research compound of biotechnological interest.
0

Comparison of Xrn1 and Rat1 5′ → 3′ exoribonucleases in budding yeast supports the specific role of Xrn1 in cotranslational mRNA decay

José Pérez-Ortín et al.Jun 14, 2024
Abstract The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5′ → 3′ exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C‐terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as “cotranslational mRNA decay.” The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5′ → 3′ decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C‐terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C‐terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.
0

Chromatin-sensitive cryptic promoters encode alternative protein isoforms in yeast

Wei Wu et al.Aug 29, 2018
Cryptic transcription is widespread and generates a heterogeneous group of RNA molecules of unknown function. To improve our understanding of cryptic transcription, we investigated their transcription start site usage, chromatin organization and post-transcriptional consequences in Saccharomyces cerevisiae . We show that transcription start sites (TSSs) of chromatin-sensitive internal cryptic transcripts retain comparable features of canonical TSSs in terms of DNA sequence, directionality and chromatin accessibility. We degine the 5’ and 3’ boundaries of cryptic transcripts and show that, contrary to RNA degradation-sensitive ones, they often overlap with the end of the gene thereby using the canonical polyadenylation site and associate to polyribosomes. We show that chromatin-sensitive cryptic transcripts can be recognized by ribosomes and may produce truncated polypeptides from downstream, in-frame start codons. Finally, we congirm the presence of the predicted polypeptides by reanalyzing N-terminal proteomic datasets. Our work suggests that a fraction of chromatin-sensitive internal cryptic promoters are in fact alternative truncated mRNA isoforms. The expression of these chromatin-sensitive isoforms is conserved from yeast to human expanding the functional consequences of cryptic transcription and proteome complexity.