AT
Ayman Taher
Author with expertise in Gliomas
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
6
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
17

G-CSF Secreted by Epigenetically Reprogrammed Mutant IDH1 Glioma Stem Cells Reverses the Myeloid Cells’-Mediated Immunosuppressive Tumor Microenvironment

Mahmoud Alghamri et al.Jul 24, 2020
ABSTRACT Mutation in isocitrate dehydrogenase ( mIDH ) is a gain of function mutation resulting in the production of the oncometabolite, R-2-hydroxyglutarate, that inhibits DNA and histone demethylases. The resultant hypermethylation phenotype reprograms the glioma cells’ transcriptome and elicits profound effects on glioma immunity. We report that in mouse models and human gliomas, mIDH1 in the context of ATRX and TP53 inactivation results in global expansion of the granulocytic myeloid cells’ compartment. Single-cell RNA-sequencing coupled with mass cytometry analysis revealed that these granulocytes are mainly non-immunosuppressive neutrophils and pre-neutrophils; with a small fraction of polymorphonuclear myeloid-derived suppressor cells. The mechanism of mIDH1 mediated pre-neutrophils expansion involves epigenetic reprogramming which leads to enhanced expression of the granulocyte colony-stimulating factor (G-CSF). Blocking G-CSF restored the inhibitory potential of PMN-MDSCs and enhanced tumor progression. Thus, G-CSF induces remodeling of the inhibitory PMN-MDSCs in mIDH1 glioma rendering them non-immunosuppressive; and having significant therapeutic implications. SIGNIFICANCE mIDH1 is the most common mutation in gliomas associated with improved prognosis. Gliomas harboring mIDH1 , together with ATRX and TP53 inactivation, exhibit higher circulating levels of G-CSF, ensuing the recruitment and expansion of non-suppressive neutrophils, pre-neutrophils and small fraction of PMN-MDSCs to the TME leading to an immune permissive phenotype.
17
Citation3
0
Save
8

Systemic delivery of a CXCR4-CXCL12 signaling inhibitor encapsulated in synthetic protein nanoparticles for glioma immunotherapy

Mahmoud Alghamri et al.Aug 30, 2021
Abstract Glioblastoma multiforme (GBM) is an aggressive primary brain tumor, with poor prognosis. Major obstacles hampering effective therapeutic response in GBM are tumor heterogeneity, high infiltration of immunosuppressive myeloid cells, and the presence of the blood-brain barrier. The C-X-C Motif Chemokine Ligand 12/ C-X-C Motif Chemokine Receptor 4 (CXCL12/ CXCR4) signaling pathway is implicated in GBM invasion and cell cycle progression. While the CXCR4 antagonists (AMD3100) has a potential anti-GBM effects, its poor pharmacokinetic and systemic toxicity had precluded its clinical application. Moreover, the role of CXCL12/ CXCR4 signaling pathway in anti-GBM immunity, particularly in GBM-mediated immunosuppression has not been elucidated. Here, we developed a synthetic protein nanoparticle (SPNPs) coated with the cell-penetrating peptide iRGD (AMD3100 SPNPs) to target the CXCR4/CXCL12 signaling axis in GBM. We showed that AMD3100 SPNPs effectively blocked CXCR4 signaling in mouse and human GBM cells in vitro as well as in GBM model in vivo . This results in inhibition of GBM proliferation and induction of immunogenic tumor cell death (ICD) leading to inhibition of GBM progression. Our data also demonstrate that blocking CXCR4 sensitizes GBM cells to radiation, eliciting enhanced release of ICD ligands. Combining AMD3100 SPNPs with radiotherapy inhibited GBM progression and led to long-term survival; with 60% of mice remaining tumor-free. This was accompanied by an anti-GBM immune response and sustained immunological memory that prevented tumor recurrence without further treatment. Finally, we showed that systemic delivery of AMD3100 SPNPs decreased the infiltration of CXCR4 + monocytic myeloid-derived suppressor cells to the tumor microenvironment. With the potent ICD induction and reprogrammed immune microenvironment, this strategy has significant potential for future clinical translation. Graphical abstract Immunological mechanism targeting Glioblastoma (GBM) upon blocking CXCR4 signaling pathway with AMD3100-conjugated nanoparticles (SPNPs). (1) Radiotherapy induces glioma cell death, followed by Damage-associated molecular patterns (DAMPs) release. Dendritic cells (DC) are activated by DAMPs and migrate to the regional lymph node where they prime cytotoxic T lymphocyte immune response. Tumor-specific cytotoxic T cells infiltrate the tumor and attack glioma cells. (2) Glioma cells express CXCR4, as well its ligand CXCL12. CXCL12 induces glioma cell proliferation and, (3) as well as mobilization in the bone marrow of CXCR4 expressing myeloid MDSC, which will infiltrate the tumor, and inhibit tumor-specific cytotoxic T cells activity. GEMM of glioma when treated systemically with SPNPs AMD3100 SPNPs plus radiation, nanoparticles block the interaction between CXCR4 and CXCL12, thus (4) inhibiting glioma cell proliferation and (5) reducing mobilization in the bone marrow of CXCR4 expressing myeloid MDSC, (6) generating a reduced MDSC tumor infiltration, as well as releasing MDSC inhibition over tumor specific cytotoxic T cell response.
8
Citation1
0
Save
0

Epigenetic Reprogramming of Autophagy Drives Mutant IDH1 Glioma Progression and Response to Radiation

Felipe Núñez et al.Mar 13, 2024
Abstract Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.
0
Citation1
0
Save
1

H3.3-G34R Mutation-Mediated Epigenetic Reprogramming Leads to Enhanced Efficacy of Immune Stimulatory Gene Therapy in Pediatric High-Grade Gliomas

María Garcia-Fabiani et al.Jun 13, 2023
Pediatric high-grade gliomas (pHGGs) are diffuse and highly aggressive CNS tumors which remain incurable, with a 5-year overall survival of less than 20%. Within glioma, mutations in the genes encoding the histones H3.1 and H3.3 have been discovered to be age-restricted and specific of pHGGs. This work focuses on the study of pHGGs harboring the H3.3-G34R mutation. H3.3-G34R tumors represent the 9-15% of pHGGs, are restricted to the cerebral hemispheres, and are found predominantly in the adolescent population (median 15.0 years). We have utilized a genetically engineered immunocompetent mouse model for this subtype of pHGG generated via the Sleeping Beauty-transposon system. The analysis of H3.3-G34R genetically engineered brain tumors by RNA-Sequencing and ChIP-Sequencing revealed alterations in the molecular landscape associated to H3.3-G34R expression. In particular, the expression of H3.3-G34R modifies the histone marks deposited at the regulatory elements of genes belonging to the JAK/STAT pathway, leading to an increased activation of this pathway. This histone G34R-mediated epigenetic modifications lead to changes in the tumor immune microenvironment of these tumors, towards an immune-permissive phenotype, making these gliomas susceptible to TK/Flt3L immune-stimulatory gene therapy. The application of this therapeutic approach increased median survival of H3.3-G34R tumor bearing animals, while stimulating the development of anti-tumor immune response and immunological memory. Our data suggests that the proposed immune-mediated gene therapy has potential for clinical translation for the treatment of patients harboring H3.3-G34R high grade gliomas.
1
Citation1
0
Save