RB
Rachel Byron
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
3,661
h-index:
14
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An expansive human regulatory lexicon encoded in transcription factor footprints

Shane Neph et al.Sep 1, 2012
Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis–regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein–DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency. DNase I footprinting in 41 cell and tissue types reveals millions of short sequence elements encoding an expansive repertoire of conserved recognition sequences for DNA-binding proteins. DNaseI footprinting detects DNA sequences that are protected from cleavage by DNaseI because they are bound by regulatory factors. Studying these footprints in 41 diverse cell and tissue types, the authors describe millions of short sequence elements that are conserved recognition sequences for DNA-binding proteins. The effort nearly doubles the size of the human cis-regulatory lexicon and provides insight into chromatin states and levels of evolutionary conservation. A large collection of novel regulatory-factor recognition motifs that closely parallel major regulators of development, differentiation and pluripotency is also described.
0
Citation782
0
Save
0

The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation

Tobias Ragoczy et al.May 16, 2006
We have examined the relationship between nuclear localization and transcriptional activity of the endogenous murine beta-globin locus during erythroid differentiation. Murine fetal liver cells were separated into distinct erythroid maturation stages by fluorescence-activated cell sorting, and the nuclear position of the locus was determined at each stage. We find that the beta-globin locus progressively moves away from the nuclear periphery with increasing maturation. Contrary to the prevailing notion that the nuclear periphery is a repressive compartment in mammalian cells, beta(major)-globin expression begins at the nuclear periphery prior to relocalization. However, relocation of the locus to the nuclear interior with maturation is accompanied by an increase in beta(major)-globin transcription. The distribution of nuclear polymerase II (Pol II) foci also changes with erythroid differentiation: Transcription factories decrease in number and contract toward the nuclear interior. Moreover, both efficient relocalization of the beta-globin locus from the periphery and its association with hyperphosphorylated Pol II transcription factories require the locus control region (LCR). These results suggest that the LCR-dependent association of the beta-globin locus with transcriptionally engaged Pol II foci provides the driving force for relocalization of the locus toward the nuclear interior during erythroid maturation.
0
Citation314
0
Save
0

Conservation of trans-acting circuitry during mammalian regulatory evolution

Andrew Stergachis et al.Nov 18, 2014
The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.
0
Citation225
0
Save
0

Seq2MAIT: A Novel Deep Learning Framework for Identifying Mucosal Associated Invariant T (MAIT) Cells

Hesham ElAbd et al.Mar 14, 2024
Abstract Mucosal-associated invariant T (MAIT) cells are a group of unconventional T cells that mainly recognize bacterial vitamin B metabolites presented on MHC-related protein 1 (MR1). MAIT cells have been shown to play an important role in controlling bacterial infection and in responding to viral infections. Furthermore, MAIT cells have been implicated in different chronic inflammatory diseases such as inflammatory bowel disease and multiple sclerosis. Despite their involvement in different physiological and pathological processes, a deeper understanding of MAIT cells is still lacking. Arguably, this can be attributed to the difficulty of quantifying and measuring MAIT cells in different biological samples which is commonly done using flow cytometry-based methods and single-cell-based RNA sequencing techniques. These methods mostly require fresh samples which are difficult to obtain, especially from tissues, have low to medium throughput, and are costly and labor-intensive. To address these limitations, we developed sequence-to-MAIT ( Seq2MAIT ) which is a transformer-based deep neural network capable of identifying MAIT cells in bulk TCR-sequencing datasets, enabling the quantification of MAIT cells from any biological materials where human DNA is available. Benchmarking Seq2MAIT across different test datasets showed an average area-under-the-receiver-operator-curve (AU[ROC]) >0.80. In conclusion, Seq2MAIT is a novel, economical, and scalable method for identifying and quantifying MAIT cells in virtually any biological sample.
0

Identifying immune signatures of common exposures through co-occurrence of T-cell receptors in tens of thousands of donors

Damon May et al.Mar 27, 2024
ABSTRACT Memory T cells are records of clonal expansion from prior immune exposures, such as infections, vaccines and chronic diseases like cancer. A subset of the receptors of these expanded T cells in a typical immune repertoire are highly public, i.e., present in many individuals exposed to the same exposure. For the most part, the exposures associated with these public T cells are unknown. To identify public T-cell receptor signatures of immune exposures, we mined the immunosequencing repertoires of tens of thousands of donors to define clusters of co-occurring T cells. We first built co-occurrence clusters of T cells responding to antigens presented by the same Human Leukocyte Antigen (HLA) and then combined those clusters across HLAs. Each cross-HLA cluster putatively represents the public T-cell signature of a single prevalent exposure. Using repertoires from donors with known serological status for 7 prevalent exposures (HSV-1, HSV-2, EBV, Parvovirus, Toxoplasma gondii , Cytomegalovirus and SARS-CoV-2), we identified a single T-cell cluster strongly associated with each exposure and used it to construct a highly sensitive and specific diagnostic model for the exposure. These T-cell clusters constitute the public immune responses to prevalent exposures, 7 known and many others unknown. By learning the exposure associations for more T-cell clusters, this approach could be used to derive a ledger of a person’s past and present immune exposures.
0
Citation1
0
Save
1

Tissue context determines the penetrance of regulatory DNA variation

Jessica Halow et al.Jun 28, 2020
Abstract Assessment of the functional consequences of disease-associated sequence variation at non-coding regulatory elements is complicated by their high degree of context sensitivity to both the local chromatin and nuclear environments. Allelic profiling of DNA accessibility across individuals has shown that only a select minority of sequence variation affects transcription factor (TF) occupancy, yet the low sequence diversity in human populations means that no experimental assessment is available for the majority of disease-associated variants. Here we describe high-resolution in vivo maps of allelic DNA accessibility in liver, kidney, lung and B cells from 5 increasingly diverged strains of F1 hybrid mice. The high density of heterozygous sites in these hybrids enables precise quantification of the effect size and cell-type specificity of hundreds of thousands of variants throughout the mouse genome. We show that chromatin-altering variants delineate characteristic sensitivity profiles for hundreds of TF motifs. We develop a compendium of TF-specific sensitivity profiles accounting for genomic context effects. Finally, we link these maps of allelic accessibility to allelic transcript levels in the same samples. This work provides a foundation for quantitative prediction of cell-type specific effects of non-coding variation on TF activity, which will dramatically facilitate both fine-mapping and systems-level analyses of common disease-associated variation in human genomes.