KG
Karine Gallardo
Author with expertise in Symbiotic Nitrogen Fixation in Legumes
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,423
h-index:
34
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Proteomic Analysis of Arabidopsis Seed Germination and Priming

Karine Gallardo et al.Jun 1, 2001
Abstract To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.
0

The Effect of α-Amanitin on the Arabidopsis Seed Proteome Highlights the Distinct Roles of Stored and Neosynthesized mRNAs during Germination

Loïc Rajjou et al.Apr 1, 2004
Abstract To investigate the role of stored and neosynthesized mRNAs in seed germination, we examined the effect of α-amanitin, a transcriptional inhibitor targeting RNA polymerase II, on the germination of nondormant Arabidopsis seeds. We used transparent testa mutants, of which seed coat is highly permeable, to better ascertain that the drug can reach the embryo during seed imbibition. Even with the most permeable mutant (tt2-1), germination (radicle protrusion) occurred in the absence of transcription, while subsequent seedling growth was blocked. In contrast, germination was abolished in the presence of the translational inhibitor cycloheximide. Taken together, the results highlight the role of stored proteins and mRNAs for germination in Arabidopsis and show that in this species the potential for germination is largely programmed during the seed maturation process. The α-amanitin-resistant germination exhibited characteristic features. First, this germination was strongly slowed down, indicating that de novo transcription normally allows the synthesis of factor(s) activating the germination rate. Second, the sensitivity of germination to gibberellic acid was reduced 15-fold, confirming the role of this phytohormone in germination. Third, de novo synthesis of enzymes involved in reserve mobilization and resumption of metabolic activity was repressed, thus accounting for the failure in seedling establishment. Fourth, germinating seeds can recapitulate at least part of the seed maturation program, being capable of using mRNAs stored during development. Thus, commitment to germination and plant growth requires transcription of genes allowing the imbibed seed to discriminate between mRNAs to be utilized in germination and those to be destroyed.
0

The vacuolar sulfate transporter PsSULTR4 is a key determinant of seed yield and protein composition in pea

Fanélie Bachelet et al.Aug 8, 2024
SUMMARY Pea is a grain legume crop with a high potential to accelerate the food transition due to its high seed protein content and relatively well‐balanced amino acid composition. The critical role of external sulfur (S) supply in determining seed yield and seed quality in pea makes it essential to understand the impact of whole plant S management on the trade‐off between these two traits. Here, we investigated the physiological relevance of vacuolar sulfate remobilization by targeting PsSULTR4, the only pea sulfate transporter showing substantial similarity to the vacuolar sulfate exporter AtSULTR4;1. Five mutations in PsSULTR4 were identified by TILLING (Targeting Induced Local Lesions IN Genomes), two of which, a loss of function (W78*) and a missense (E568K), significantly decreased seed yield under S deprivation. We demonstrate that PsSULTR4 triggers S distribution from source tissues, especially lower leaves, to reproductive organs to maintain seed yield under S deficiency. Under sufficient S supply, sultr4 seeds display lower levels of the S‐rich storage protein PA1 at maturity. They also overaccumulate sulfate in the endosperm at the onset of seed filling. These findings uncover a role of PsSULTR4 in the remobilization of vacuolar sulfate during embryo development, allowing the efficient synthesis of S‐rich proteins. Our study uncovers that PsSULTR4 functions (i) in source tissues to remobilize stored vacuolar sulfate for seed production under low S availability and (ii) in developing seeds well supplied with S to fine‐tune sulfate remobilization from the endosperm as a critical control point for storage activities in the embryo.
0

Genome sequence of the cluster root forming white lupin

Bárbara Hufnagel et al.Jul 19, 2019
White lupin (Lupinus albus L.) is a legume that produces seeds recognized for their high protein content and good nutritional value (lowest glycemic index of all grains, high dietary fiber content, and zero gluten or starch). White lupin can form nitrogen-fixing nodules but has lost the ability to form mycorrhizal symbiosis with fungi. Nevertheless, its root system is well adapted to poor soils: it produces cluster roots, constituted of dozens of determinate lateral roots that improve soil exploration and phosphate remobilization. As phosphate is a limited resource that comes from rock reserves, the production of cluster roots is a trait of interest to improve fertilizers efficiency. Using long reads sequencing technologies, we provide a high-quality genome sequence of a modern variety of white lupin (2n=50, 451 Mb), as well as de novo assemblies of a landrace and a wild relative. We describe how domestication impacted soil exploration capacity through the early establishment of lateral and cluster roots. We identify the APETALA2 transcription factor LaPUCHI-1, homolog of the Arabidopsis morphogenesis coordinator, as a potential regulator of this trait. Our high-quality genome and companion genomic and transcriptomic resources enable the development of modern breeding strategies to increase and stabilize yield and to develop new varieties with reduced allergenic properties (caused by conglutins), which would favor the deployment of this promising culture.
0

Molecular signatures and associated regulators of the pea leaf response to sulfur deficiency and water deficit as revealed by multi-omics analyses

Titouan Bonnot et al.Mar 14, 2024
Abstract Sulfur availability in soils affects both yield and seed quality in major crops, and the plant capacity to tolerate environmental constraints. Under stress combination, plants often show specific responses at the molecular level. To dissect the molecular responses to sulfur deficiency in interaction or not with water deficit, a multi-omics approach was used focusing on the leaves of pea ( Pisum sativum ), at several days during the early reproductive phase. Using ionomics, transcriptomics, proteomics and gene network analyses, we identified a module of genes strongly driven by sulfur availability. This includes known and putative new players of plant responses to sulfur-deprived conditions. Conserved profiles between proteins and mRNAs were specifically observed within this module, suggesting transcriptional regulation. While moderate water deficit had little impact when occurring alone, it thoroughly perturbed plant growth and the leaf transcriptome and proteome when combined with sulfur deficiency. Under this stress combination, molecular responses were amplified, notably at the transcriptome level, in a time-specific manner. Genes with specific or greater responses under this condition were identified, and transcriptional regulators of the highlighted genes and pathways were predicted, which may represent interesting targets to develop crops tolerant to multi-stress conditions.