HZ
Haoyu Zhang
Author with expertise in Genomic Studies and Association Analyses
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
3
h-index:
35
/
i10-index:
143
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Common variants in breast cancer risk loci predispose to distinct tumor subtypes

Thomas Ahearn et al.Aug 15, 2019
Abstract Background Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER), but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. Methods Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. Results Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate <5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at P<0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. Conclusion This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
0
Citation2
0
Save
0

A data-driven force-thermal coupling load identification method considering multi-source uncertainties of structural characteristics and measuring noises

Lei Wang et al.May 1, 2024
The problem of load identification denotes identifying loads based on the measurement of structural responses, which is the inverse problem in structural dynamics. With advancements in aeronautical technology, the working environment of aircraft becomes even more complex. To accurately monitor and forecast the load environment where the structure works can provide guidance for the structural design of aircraft and predict potential structural damage. However, with the development of hypersonic aircraft, the influence of thermal field also cannot be ignored besides external forces that are applied to the structure, thus, there is an urgent need for effective methods to identify both force and thermal loads. In this paper, firstly, A data-driven load identification method and various load identification strategies for the identification of force-thermal load based on Artificial Neural Networks are proposed, and in different loading cases the relative error of identification is less than 5 %, with the training process converging efficiently within a short time; additionally, multi-source uncertainties, including Gaussian white noises and structural uncertainties, are simulated, and their influence on load identification is also evaluated; moreover, sensor placement optimization based on particle swarm optimization is carried out to enhance accuracy of load identification, and the number of sensors and the corresponding optimal placement of sensors are determined, it can be proved via numerical examples that the optimized sensor placement can reduce the error of load identification by more than 90 % of that of a random sensor placement.
0

Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses

Haoyu Zhang et al.Sep 24, 2019
Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study (GWAS) including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status and tumor grade. We identified 32 novel susceptibility loci ( P <5.0×10-8), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate <0.05). Five loci showed associations ( P <0.05) in opposite directions between luminal- and non-luminal subtypes. In-silico analyses showed these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 37.6% for triple-negative and 54.2% for luminal A-like disease. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
0

Residual Partial Least Squares Learning: Brain Cortical Thickness Simultaneously Predicts Eight Non-pairwise-correlated Behavioural and Disease Outcomes in Alzheimer's Disease

Oliver Chén et al.Mar 13, 2024
Alzheimer's Disease (AD) is the leading cause of dementia. It results in cortical thickness changes and is associated with a decline in cognition and behaviour. Such decline affects multiple important day-to-day functions, including memory, language, orientation, judgment and problem-solving. Recent research has made important progress in identifying brain regions associated with single outcomes, such as individual AD status and general cognitive decline. The complex projection from multiple brain areas to multiple AD outcomes, however, remains poorly understood. This makes the assessment and especially the prediction of multiple AD outcomes - each of which may unveil an integral yet different aspect of the disease - challenging, particularly when some are not strongly correlated. Here, uniting residual learning, partial least squares (PLS), and predictive modelling, we develop an explainable, generalisable, and reproducible method called the Residual Partial Least Squares Learning (the re-PLS Learning) to (1) chart the pathways between large-scale multivariate brain cortical thickness data (inputs) and multivariate disease and behaviour data (outcomes); (2) simultaneously predict multiple, non-pairwise-correlated outcomes; (3) control for confounding variables (e.g., age and gender) affecting both inputs and outcomes and the pathways in-between; (4) perform longitudinal AD disease status classification and disease severity prediction. We evaluate the performance of the proposed method against a variety of alternatives on data from AD patients, subjects with mild cognitive impairment (MCI), and cognitively normal individuals (n=1,196) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our results unveil pockets of brain areas in the temporal, frontal, sensorimotor, and cingulate areas whose cortical thickness may be respectively associated with declines in different cognitive and behavioural subdomains in AD. Finally, we characterise re-PLS' geometric interpretation and mathematical support for delivering meaningful neurobiological insights and provide an open software package (re-PLS) available at https://github.com/thanhvd18/rePLS.
0

Power Analysis Provides Bounds for Genetic Architecture and Insights to Challenges for Rare Variant Association Studies

Andriy Derkach et al.Jan 16, 2017
Genome-wide association studies are now shifting focus from analysis of common to uncommon and rare variants with an anticipation to explain additional heritability of complex traits. As power for association testing for individual rare variants may often be low, various aggregate level association tests have been proposed to detect genetic loci that may contain clusters of susceptibility variants. Typically, power calculations for such tests require specification of large number of parameters, including effect sizes and allele frequencies of individual variants, making them difficult to use in practice. In this report, we approximate power to varying degree of accuracy using a smaller number of key parameters, including the total genetic variance explained by multiple variants within a locus. We perform extensive simulation studies to assess the accuracy of the proposed approximations in realistic settings. Using the simplified power calculation methods, we then develop an analytic framework to obtain bounds on genetic architecture of an underlying trait given results from a genome-wide study and observe important implications for the completely lack of or limited number of findings in many currently reported studies. Finally, we provide insights into the required quality of annotation/functional information for identification of likely causal variants to make meaningful improvement in power of subsequent association tests. A shiny application, Power Analysis for GEnetic AssociatioN Tests (PAGEANT), in R implementing the methods is made publicly available.
0

A Mixed-Model Approach for Powerful Testing of Genetic Associations with Cancer Risk Incorporating Tumor Characteristics

Haoyu Zhang et al.Oct 17, 2018
Cancers are routinely classified into subtypes according to various features, including histopathological characteristics and molecular markers. Previous genome-wide association studies have reported heterogeneous associations between loci and cancer subtypes. However, it is not evident what is the optimal modeling strategy for handling correlated tumor features, missing data, and increased degrees-of-freedom in the underlying tests of associations. We propose to test for genetic associations using a mixed-effect two-stage polytomous model score test (MTOP). In the first stage, a standard polytomous model is used to specify all possible sub-types defined by the cross-classification of the tumor characteristics. In the second stage, the subtype-specific case-control odds ratios are specified using a more parsimonious model based on the case-control odds ratio for a baseline subtype, and the case-case parameters associated with tumor markers. Further, to reduce the degrees-of-freedom, we specify case-case parameters for additional exploratory markers using a random-effect model. We use the Expectation-Maximization (EM) algorithm to account for missing data on tumor markers. Through simulations across a range of realistic scenarios and data from the Polish Breast Cancer Study (PBCS), we show MTOP outperforms alternative methods for identifying heterogeneous associations between risk loci and tumor subtypes. The proposed methods have been implemented in a user-friendly and high-speed R statistical package called TOP ( ).
0

Assessment of Polygenic Architecture and Risk Prediction based on Common Variants Across Fourteen Cancers

Yan Zhang et al.Aug 9, 2019
We analyzed summary-level data from genome-wide association studies (GWAS) of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) contributing to risk, as well as the distribution of their associated effect sizes. All cancers evaluated showed polygenicity, involving at a minimum thousands of independent susceptibility variants. For some malignancies, particularly chronic lymphoid leukemia (CLL) and testicular cancer, susceptibility variants have a larger proportion of variants with larger effect sizes than those for other cancers. In contrast, most variants for lung and breast cancers have very small associated effect sizes. We estimate a wide range of GWAS sample sizes for different cancer sites required to explain 80% of GWAS heritability, varying from 60,000 cases for CLL to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk-scores, compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that polygenic risk scores have substantial potential for risk stratification for relatively common cancers such as breast, prostate and colon, but limited potential for other cancer sites because of modest heritability and lower disease incidence.