TC
Torben Christiansen
Author with expertise in Genomic Analysis of Ancient DNA
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
402
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Flow and Sediment Transport on a Tidal Salt Marsh Surface

Torben Christiansen et al.Mar 1, 2000
T
P
T
The physical processes that control mineral sediment deposition on a mesotidal salt marsh surface on the Atlantic Coast of Virginia were characterized through a series of measurements of sediment concentration, flow velocity, turbulence, water surface elevation, marsh topography and particle size distributions of sediment deposited on the marsh surface. The comprehensive nature of the data set allowed assessment of the temporal and spatial variability in marsh surface deposition, the variability in depositional processes among tides of different amplitudes, as well as the specific processes that control deposition on this tidal marsh. Through three different types of measurements, it was found that sediment deposition occurred on the marsh surface during rising tides at tidal elevations ranging from those barely flooding the creek bank to high spring tides, and that sediment was not remobilized by tidal flows after initial deposition. Sediment deposition occurred on this marsh surface largely because fine sediment in suspension formed flocs. Analysis of inorganic grain size distributions of sediment deposited within 8 m of the tidal creek indicated that 70–80% of this sediment was deposited in a flocculated form. The rest (particles larger than 20 μm) were deposited as individual particles. In the marsh interior, 25 m from the tidal creek, single grain settling predominated. Reduction of turbulence levels within the vegetation canopy on the marsh also promoted particle settling. The processes controlling sediment deposition did not vary among tides. However, suspended sediment concentrations near the creek bank increased with increasing tidal amplitude, consequently promoting higher rates of deposition on higher tides.
0
Paper
Citation402
0
Save
0

Steppe Ancestry in western Eurasia and the spread of the Germanic Languages

Hugh McColl et al.Mar 14, 2024
+120
A
A
H
Summary Germanic-speaking populations historically form an integral component of the North and Northwest European cultural configuration. According to linguistic consensus, the common ancestor of the Germanic languages, which include German, English, Frisian, Dutch as well as the Nordic languages, was spoken in Northern Europe during the Pre-Roman Iron Age. However, important questions remain concerning the earlier Bronze Age distribution of this Indo-European language branch in Scandinavia as well as the driving factors behind its Late Iron Age diversification and expansion across the European continent. A key difficulty in addressing these questions are the existence of striking differences in the interpretation of the archaeological record, leading to various hypotheses of correlations with linguistic dispersals and changes in material culture. Moreover, these interpretations have been difficult to assess using genomics due to limited ancient genomes and the difficulty in differentiating closely related populations. Here we integrate multidisciplinary evidence from population genomics, historical sources, archaeology and linguistics to offer a fully revised model for the origins and spread of Germanic languages and for the formation of the genomic ancestry of Germanic-speaking northern European populations, while acknowledging that coordinating archaeology, linguistics and genetics is complex and potentially controversial. We sequenced 710 ancient human genomes from western Eurasia and analysed them together with 3,940 published genomes suitable for imputing diploid genotypes. We find evidence of a previously unknown, large-scale Bronze Age migration within Scandinavia, originating in the east and becoming widespread to the west and south, thus providing a new potential driving factor for the expansion of the Germanic speech community. This East Scandinavian genetic cluster is first seen 800 years after the arrival of the Corded Ware Culture, the first Steppe-related population to emerge in Northern Europe, opening a new scenario implying a Late rather than an Middle Neolithic arrival of the Germanic language group in Scandinavia. Moreover, the non-local Hunter-Gatherer ancestry of this East Scandinavian cluster is indicative of a cross-Baltic maritime rather than a southern Scandinavian land-based entry. Later in the Iron Age around 1700 BP, we find a southward push of admixed Eastern and Southern Scandinavians into areas including Germany and the Netherlands, previously associated with Celtic speakers, mixing with local populations from the Eastern North Sea coast. During the Migration Period (1575-1200 BP), we find evidence of this structured, admixed Southern Scandinavian population representing the Western Germanic Anglo-Saxon migrations into Britain and Langobards into southern Europe. During the Migration Period, we detect a previously unknown northward migration back into Southern Scandinavia, partly replacing earlier inhabitants and forming the North Germanic-speaking Viking-Age populations of Denmark and southern Sweden, corresponding with historically attested Danes. However, the origin and character of these major changes in Scandinavia before the Viking Age remain contested. In contrast to these Western and Northern Germanic-speaking populations, we find the Wielbark population from Poland to be primarily of Eastern Scandinavian ancestry, supporting a Swedish origin for East Germanic groups. In contrast, the later cultural descendants, the Ostrogoths and Visigoths are predominantly of Southern European ancestry implying the adoption of Gothic culture. Together, these results highlight the use of archaeology, linguistics and genetics as distinct but complementary lines of evidence.